Skip to main content
  • Research article
  • Published:

PTPN4 negatively regulates CrkI in human cell lines

Abstract

PTPN4 is a widely expressed non-receptor protein tyrosine phosphatase. Although its overexpression inhibits cell growth, the proteins with which it interacts to regulate cell growth are unknown. In this study, we identified CrkI as a PTPN4-interacting protein using a yeast two-hybrid, and confirmed this interaction using in vitro GST pull-down and co-immunoprecipitation and co-localization assays. We further determined the interactional regions as the SH3 domain of CrkI and the proline-rich region between amino acids 462 and 468 of PTPN4. Notably, overexpression of PTPN4 inhibits CrkI-mediated proliferation and wound healing of HEK293T cells, while knockdown of PTPN4 by siRNA in Hep3B cells enhances CrkI-mediated cell growth and motility. Moreover, our data show that ectopic expression of PTPN4 reduces the phosphorylation level of CrkI in HEK293T cells. These findings suggest that PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.

Abbreviations

DAPI:

4′,6-diamidino-2-phenylindole

ORF:

open-reading frame

PTPs:

protein tyrosine phosphatases

RNAi:

RNA interference

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Hubbard, S.R. and Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69 (2000) 373–398.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, Z.Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42 (2002) 209–234.

    Article  PubMed  CAS  Google Scholar 

  3. Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat. Rev. Cancer 7 (2007) 202–211.

    Article  PubMed  CAS  Google Scholar 

  4. Vang, T., Miletic, A.V., Arimura, Y., Tautz, L., Rickert, R.C. and Mustelin, T. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26 (2008) 29–55.

    Article  PubMed  CAS  Google Scholar 

  5. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J. and Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 117 (2004) 699–711.

    Article  PubMed  CAS  Google Scholar 

  6. Gu, M.X., York, J.D., Warshawsky, I. and Majerus, P.W. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosinephosphatase with sequence homology to cytoskeletal protein 4.1. Proc. Natl. Acad. Sci. USA 88 (1991) 5867–5871.

    Article  PubMed  CAS  Google Scholar 

  7. Gu, M. and Majerus, P.W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem. 271 (1996) 27751–27759.

    Article  PubMed  CAS  Google Scholar 

  8. Gu, M., Meng, K. and Majerus, P.W. The effect of overexpression of the protein tyrosine phosphatase PTPMEG on cell growth and on colony formation in soft agar in COS-7 cells. Proc. Natl. Acad. Sci. USA 93 (1996) 12980–12985.

    Article  PubMed  CAS  Google Scholar 

  9. Prehaud, C., Wolff, N., Terrien, E., Lafage, M., Megret, F., Babault, N., Cordier, F., Tan, G.S., Maitrepierre, E., Menager, P., Chopy, D., Hoos, S., England, P., Delepierre, M., Schnell, M.J., Buc, H. and Lafon, M. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci. Signal. 3 (2010) ra5.

    Article  PubMed  Google Scholar 

  10. Park, K.W., Lee, E.J., Lee, S., Lee, J.E., Choi, E., Kim, B.J., Hwang, R., Park, K.A. and Baik, J. Molecular cloning and characterization of a protein tyrosine phosphatase enriched in testis, a putative murine homologue of human PTPMEG. Gene 257 (2000) 45–55.

    Article  PubMed  CAS  Google Scholar 

  11. Whited, J.L., Robichaux, M.B., Yang, J.C. and Garrity, P.A. PTPMEG is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134 (2007) 43–53.

    Article  PubMed  CAS  Google Scholar 

  12. Hironaka, K., Umemori, H., Tezuka, T., Mishina, M. and Yamamoto, T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J. Biol. Chem. 275 (2000) 16167–16173.

    Article  PubMed  CAS  Google Scholar 

  13. Young, J.A., Becker, A.M., Medeiros, J.J., Shapiro, V.S., Wang, A., Farrar, J.D., Quill, T.A., Hooft van Huijsduijnen, R. and van Oers, N.S. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol. Immunol. 45 (2008) 3756–3766.

    Article  PubMed  CAS  Google Scholar 

  14. van der Geer, P., Hunter, T. and Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10 (1994) 251–337.

    Article  PubMed  Google Scholar 

  15. Watanabe, T., Tsuda, M., Makino, Y., Konstantinou, T., Nishihara, H., Majima, T., Minami, A., Feller, S.M. and Tanaka, S. Crk adaptor proteininduced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res. 19 (2009) 638–650.

    Article  PubMed  CAS  Google Scholar 

  16. Rodrigues, S.P., Fathers, K.E., Chan, G., Zuo, D., Halwani, F., Meterissian, S. and Park, M. CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol. Cancer Res. 3 (2005) 183–194.

    PubMed  CAS  Google Scholar 

  17. Sakai, R., Iwamatsu, A., Hirano, N., Ogawa, S., Tanaka, T., Mano, H., Yazaki, Y. and Hirai, H. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylationdependent manner. EMBO J. 13 (1994) 3748–3756.

    PubMed  CAS  Google Scholar 

  18. Matsuda, M., Hashimoto, Y., Muroya, K., Hasegawa, H., Kurata, T., Tanaka, S., Nakamura, S. and Hattori, S. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol. Cell. Biol. 14 (1994) 5495–5500.

    PubMed  CAS  Google Scholar 

  19. Beitner-Johnson, D. and LeRoith, D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J. Biol. Chem. 270 (1995) 5187–5190.

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto, Y., Katayama, H., Kiyokawa, E., Ota, S., Kurata, T., Gotoh, N., Otsuka, N., Shibata, M. and Matsuda, M. Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor. J. Biol. Chem. 273 (1998) 17186–17191.

    Article  PubMed  CAS  Google Scholar 

  21. Antoku, S. and Mayer, B.J. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J. Cell Sci. 122 (2009) 4228–4238.

    Article  PubMed  CAS  Google Scholar 

  22. Akakura, S., Kar, B., Singh, S., Cho, L., Tibrewal, N., Sanokawa-Akakura, R., Reichman, C., Ravichandran, K.S. and Birge, R.B. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J. Cell Physiol. 204 (2005) 344–351.

    Article  PubMed  CAS  Google Scholar 

  23. Kiyokawa, E., Hashimoto, Y., Kobayashi, S., Sugimura, H., Kurata, T. and Matsuda, M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12 (1998) 3331–3336.

    Article  PubMed  CAS  Google Scholar 

  24. Bell, E.S. and Park, M. Models of crk adaptor proteins in cancer. Genes Cancer 3 (2012) 341–352.

    Article  PubMed  Google Scholar 

  25. Park, T.J. and Curran, T. Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway. J. Neurosci. 28 (2008) 13551–13562.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuki, T., Pramatarova, A. and Howell, B.W. Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis. J. Cell Sci. 121 (2008) 1869–1875.

    Article  PubMed  CAS  Google Scholar 

  27. Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20 (2001) 6348–6371.

    Article  PubMed  CAS  Google Scholar 

  28. Linghu, H., Tsuda, M., Makino, Y., Sakai, M., Watanabe, T., Ichihara, S., Sawa, H., Nagashima, K., Mochizuki, N. and Tanaka, S. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25 (2006) 3547–3556.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, H., Linghu, H., Wang, J., Che, Y.L., Xiang, T.X., Tang, W.X. and Yao, Z. W. The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3. Tumour Biol. 31 (2010) 59–67.

    Article  PubMed  Google Scholar 

  30. Takino, T., Nakada, M., Miyamori, H., Yamashita, J., Yamada, K.M. and Sato, H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 63 (2003) 2335–2337.

    PubMed  CAS  Google Scholar 

  31. Miller, C.T., Chen, G., Gharib, T.G., Wang, H., Thomas, D.G., Misek, D.E., Giordano, T.J., Yee, J., Orringer, M.B., Hanash, S.M. and Beer, D.G. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22 (2003) 7950–7957.

    Article  PubMed  Google Scholar 

  32. Wan, B., Wang, X.R., Zhou, Y.B., Zhang, X., Huo, K. and Han, Z.G. C12ORF39, a novel secreted protein with a typical amidation processing signal. Biosci. Rep. 30 (2010) 1–10.

    Article  CAS  Google Scholar 

  33. Wan, B., Zhou, Y.B., Zhang, X., Zhu, H., Huo, K. and Han, Z.G. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett. 582 (2008) 3185–3192.

    Article  PubMed  CAS  Google Scholar 

  34. Bauler, T.J., Hendriks, W.J. and King, P.D. The FERM and PDZ domaincontaining protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE 3 (2008) e4014.

    Article  PubMed  Google Scholar 

  35. Schumacher, C., Knudsen, B.S., Ohuchi, T., Di Fiore, P.P., Glassman, R.H. and Hanafusa, H. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. J. Biol. Chem. 270 (1995) 15341–15347.

    Article  PubMed  CAS  Google Scholar 

  36. Feller, S.M., Knudsen, B. and Hanafusa, H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J. 13 (1994) 2341–2351.

    PubMed  CAS  Google Scholar 

  37. Matsuda, M., Tanaka, S., Nagata, S., Kojima, A., Kurata, T. and Shibuya, M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12 (1992) 3482–3489.

    PubMed  CAS  Google Scholar 

  38. Ren, R., Ye, Z.S. and Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8 (1994) 783–795.

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe, T., Tsuda, M., Tanaka, S., Ohba, Y., Kawaguchi, H., Majima, T., Sawa, H. and Minami, A. Adaptor protein Crk induces Src-dependent activation of p38 MAPK in regulation of synovial sarcoma cell proliferation. Mol. Cancer Res. 7 (2009) 1582–1592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Li or Keke Huo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Wan, B., Shan, J. et al. PTPN4 negatively regulates CrkI in human cell lines. Cell Mol Biol Lett 18, 297–314 (2013). https://doi.org/10.2478/s11658-013-0090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0090-3

Key words