Skip to main content

Characterization of the 5′-flanking region of the mouse asparagine-linked glycosylation 12 homolog gene

Abstract

Recently, we characterized multiple roles of the endoplasmic reticulum stress responsive element (ERSE) in the promotion of a unique headto-head gene pair: mammalian asparagine-linked glycosylation 12 homolog (ALG12) and cysteine-rich with EGF-like domains 2 (CRELD2). This bidirectional promoter, which consists of fewer than 400 base pairs, separates the two genes. It has been demonstrated that the ALG12 promoter shows less transcriptional activity through ERSE, but its basic regulatory mechanism has not been characterized. In this study, we focused on well-conserved binding elements for the transcription factors for ATF6, NF-Y and YY1 and the Sp1 and Ets families in the 5’-flanking region of the mouse ALG12 gene. We characterized their dominant roles in regulating ALG12 promoter activities using several deletion and mutation luciferase reporter constructs. The ALG12 gene is expressed in three distinct cell lines: Neuro2a, C6 glioma and HeLa cells. The reporter activity in each cell line decreased similarly with serial deletions of the mouse ALG12 promoter. Mutations in the ERSE and adjacent NF-Y-binding element slightly affected reporter activity. Each of the mutations in the GC-rich sequence and YY1-binding element reduced ALG12 promoter activity, and the combination of these mutations additively decreased reporter activity. Each mutation in the tandem-arranged Ets-family consensus sequences partially attenuated ALG12 promoter activity, and mutations of all three Ets-binding elements decreased promoter activity by approximately 40%. Mutation of the three conserved regulatory elements (GC-rich, YY1 and Ets) in the ALG12 promoter decreased reporter activity by more than 90%. Our results suggest that the promoter activity of the mouse ALG12 gene is regulated in a similar manner in the three cell lines tested in this study. The well-conserved consensus sequences in the promoter of this gene synergistically contribute to maintaining basal gene expression.

Abbreviations

ALG12:

asparagine-linked glycosylation 12 homolog

ATF6:

activating transcription factor 6

CDG:

congenital disorders of glycosylation

CRELD2:

cysteine-rich with EGF-like domains 2

ER:

endoplasmic reticulum

ERSE:

ER stress response element

Ets:

v-ets erythroblastosis virus E26 oncogene homolog

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HDAC:

histone deacetylase

NF-Y:

nuclear transcription factor Y

Rb:

retinoblastoma

YY1:

Yin Yang 1

References

  1. Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M. and Hennet, T. ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum. Mol. Genet. 11 (2002) 2331–2339.

    Article  CAS  PubMed  Google Scholar 

  2. Chantret, I., Dupré, T., Delenda, C., Bucher, S., Dancourt, J., Barnier, A., Charollais, A., Heron, D., Bader-Meunier, B., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P. and Moore, S.E. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-Pmannose: Man7GlcNAc2-PP-dolichyl mannosyltransferase. J. Biol. Chem. 277 (2002) 25815–25822.

    Article  CAS  PubMed  Google Scholar 

  3. Burda, P., Jakob, C.A., Beinhauer, J., Hegemann, J.H. and Aebi, M. Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology 9 (1999) 617–625.

    Article  CAS  PubMed  Google Scholar 

  4. Hoseki, J., Ushioda, R. and Nagata, K. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 147 (2010) 19–25.

    Article  CAS  PubMed  Google Scholar 

  5. Adachi, N. and Lieber, M.R. Bidirectional gene organization: a common architectural feature of the human genome. Cell 109 (2002) 807–809.

    Article  CAS  PubMed  Google Scholar 

  6. Trinklein, N.D., Aldred, S.F., Hartman, S.J., Schroeder, D.I., Otillar, R.P. and Myers, R.M. An abundance of bidirectional promoters in the human genome. Genome Res. 14 (2004) 62–66.

    Article  CAS  PubMed  Google Scholar 

  7. Li, Y.Y., Yu, H., Guo, Z.M., Guo, T.Q., Tu, K. and Li, Y.X. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput. Biol. 2 (2006) e74.

    Article  PubMed  Google Scholar 

  8. Oh-hashi, K., Koga, H., Ikeda, S., Shimada, K., Hirata, Y. and Kiuchi, K. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 — ALG12 gene pair. BMC Genomics 11 (2010) 664.

    Article  CAS  PubMed  Google Scholar 

  9. Oh-hashi, K., Koga, H., Ikeda, S., Shimada, K., Hirata, Y. and Kiuchi, K. CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochem. Biophys. Res. Commun. 387 (2009) 504–510.

    Article  CAS  PubMed  Google Scholar 

  10. Oh-hashi, K., Kunieda, R., Hirata, Y. and Kiuchi, K. Biosynthesis and secretion of mouse cysteine-rich with EGF-like domains 2. FEBS Lett. 585 (2011) 2481–2487.

    Article  CAS  PubMed  Google Scholar 

  11. Ortiz, J.A., Castillo, M., del Toro, E.D., Mulet, J., Gerber, S., Valor, L.M., Sala, S., Sala, F., Gutiérrez, L.M. and Criado, M. The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor α4 and β2 subunits. J. Neurochem. 95 (2005) 1585–1596.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, C., Johansen, F.E. and Prywes, R. Interaction of ATF6 and serum response factor. Mol. Cell. Biol. 17 (1997) 4957–4966.

    CAS  PubMed  Google Scholar 

  13. Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell. 10 (1999) 3787–3799.

    Article  CAS  PubMed  Google Scholar 

  14. Mantovani, R. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239 (1999) 15–27.

    Article  CAS  PubMed  Google Scholar 

  15. Dynan, W.S. and Tjian, R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35 (1983) 79–87.

    Article  CAS  PubMed  Google Scholar 

  16. Kaczynski, J., Cook, T. and Urrutia, R. Sp1- and Krüppel-like transcription factors. Genome Biol. 4 (2003) 206.

    Article  PubMed  Google Scholar 

  17. Gordon, S., Akopyan, G., Garban, H. and Bonavida, B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25 (2006) 1125–1142.

    Article  CAS  PubMed  Google Scholar 

  18. Deng, Z., Cao, P., Wan, M.M. and Sui, G. Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 1 (2010) 81–84.

    Article  PubMed  Google Scholar 

  19. Wasylyk, B., Hahn, S.L. and Giovane, A. The Ets family of transcription factors. Eur. J. Biochem. 211 (1993) 7–18

    Article  CAS  PubMed  Google Scholar 

  20. Oettgen, P. Regulation of vascular inflammation and remodeling by ETS factors. Circ. Res. 99 (2006) 1159–1166.

    Article  CAS  PubMed  Google Scholar 

  21. Kadonaga, J.T., Carner, K.R., Masiarz, F.R. and Tjian, R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51 (1987) 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  22. Marin, M., Karis, A., Visser, P., Grosveld, F. and Philipsen, S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89 (1997) 619–628.

    Article  CAS  PubMed  Google Scholar 

  23. Donohoe, M.E., Zhang, X., McGinnis, L., Biggers, J., Li, E. and Shi, Y. Targeted disruption of mouse Yin Yang 1 transcription factor results in periimplantation lethality. Mol. Cell. Biol. 19 (1999) 7237–7244.

    CAS  PubMed  Google Scholar 

  24. Yang, W.M., Inouye, C., Zeng, Y., Bearss, D. and Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93 (1996) 12845–12850.

    Article  CAS  PubMed  Google Scholar 

  25. Sui, G., Affarel, B., Shi, Y., Brignone, C., Wall, N.R., Yin, P., Donohoe, M., Luke, M.P., Calvo, D., Grossman, S.R. and Shi, Y. Yin Yang 1 is a negative regulator of p53. Cell 117 (2004) 859–872.

    Article  CAS  PubMed  Google Scholar 

  26. Lie-Venema, H., Gittenberger-de Groot, A.C., van Empel, L.J., Boot, M.J., Kerkdijk, H., de Kant, E. and DeRuiter, M.C. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ. Res. 92 (2003) 749–756.

    Article  CAS  PubMed  Google Scholar 

  27. Seth, A. and Watson, D.K. ETS transcription factors and their emerging roles in human cancer. Eur. J. Cancer 41 (2005) 2462–2478.

    Article  CAS  PubMed  Google Scholar 

  28. Jinnin, M., Ihn, H., Asano, Y, Yamane, K, Trojanowska, M. and Tamaki, K. Tenascin-C upregulation by transforming growth factor-β in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Oncogene 23 (2004) 1656–1667.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, C.G., Kwon, H.K., Sahoo, A., Hwang, W., So, J.S., Hwang, J.S., Chae, C.S., Kim, G.C., Kim, J.E., So, H.S., Hwang, E.S., Grenningloh, R., Ho, I.C. and Im, S.H. Interaction of Ets-1 with HDAC1 represses IL-10 expression in Th1 cells. J. Immunol. 188 (2012) 2244–2253.

    Article  CAS  PubMed  Google Scholar 

  30. Enya, K., Hayashi, H., Takii, T., Ohoka, N., Kanata, S., Okamoto, T. and Onozaki, K. The interaction with Sp1 and reduction in the activity of histone deacetylase 1 are critical for the constitutive gene expression of IL-1α in human melanoma cells. J. Leukoc. Biol. 83 (2008) 190–199.

    Article  CAS  PubMed  Google Scholar 

  31. Haeuptle, M.A. and Hennet, T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum. Mutat. 30 (2009) 1628–1641.

    Article  CAS  PubMed  Google Scholar 

  32. Tan, N.Y., Khachigian, L.M. Sp1 phosphorylation and its regulation of gene transcription. Mol. Cell. Biol. 29 (2009) 2483–2488.

    Article  CAS  PubMed  Google Scholar 

  33. Wasylyk, B., Hagman, J. and Gutierrez-Hartmann, A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem. Sci. 23 (1998) 213–216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Oh-Hashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oh-Hashi, K., Tejima, T., Hirata, Y. et al. Characterization of the 5′-flanking region of the mouse asparagine-linked glycosylation 12 homolog gene. Cell Mol Biol Lett 18, 315–327 (2013). https://doi.org/10.2478/s11658-013-0091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0091-2

Key words

  • ALG12
  • CRELD2
  • ERSE
  • Ets family
  • NF-Y
  • Sp1 family
  • YY1