Skip to main content

The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro

Abstract

Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer’s disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.

Abbreviations

A:

amyloid beta peptide

AD:

Alzheimer’s disease

ANS:

1-anilino-8-naphthalene sulfonic acid

APP:

amyloid precursor protein

CD:

circular dichroism

TEM:

transmission electron microscopy

ThT:

thioflavin T

References

  1. Burns, A., Byrne, E.J. and Maurer, K. Alzheimer’s disease. Lancet 360 (1998) 163–165.

    Article  Google Scholar 

  2. Brookmeyer, R., Gray, S. and Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88 (1998) 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  3. Khalil, Z., Poliviou, H., Maynard, C.J., Beyreuther, K., Masters, C.L. and Li, Q.X. Mechanisms of peripheral microvascular dysfunction in transgenic mice overexpressing the Alzheimer’s disease amyloid Abeta protein. J. Alzheimer’s Dis. 4 (2002) 467–478.

    CAS  Google Scholar 

  4. Waldemar, G., Dubois, B., Emre, M., Georges, J., McKeith, I.G., Rossor, M., Scheltens, P., Tariska, P. and Winblad, B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 14 (2007) e1–e26.

    Article  CAS  PubMed  Google Scholar 

  5. Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B.S., Peterhoff, C., Cataldo, A., Rudnicki, A., Amin, N., Li, B.S., Pant, H.C., Hungund, B.L., Arancio, O. and Nixon, R.A. Calpain mediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am. J. Pathol. 165 (2004) 795–805.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas, P. and Fenech, M. A review of genome mutation and Alzheimer’s disease. Mutagenesis 22 (2007) 15–33.

    Article  CAS  PubMed  Google Scholar 

  7. Bajić, P.V., Su, B., Lee, H., Kudo, W., Siedlak, L.S., Živković, L., Spremo-Potparević, B., Djelic, N., Milicevic, Z., Singh, K.A., Fahmy, M.L., Wang, X., Smith, A.M. and Zhu, X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer’s disease. Cell. Mol. Biol. Lett. 16 (2011) 350–372.

    Google Scholar 

  8. Koo, E.H. The beta-amyloid precursor protein (APP) and Alzheimer’s disease: does the tail wag the dog? Traffic 3 (2002) 763–770.

    Article  CAS  PubMed  Google Scholar 

  9. Wirths, O., Multhaup, G. and Bayer, T.A. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide-the first step of a fatal cascade. J. Neurochem. 91 (2004) 513–520.

    Article  CAS  PubMed  Google Scholar 

  10. Howlett, D.R., Simmons, D.L., Dingwall, C. and Christie, G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 23 (2000) 565–570.

    Article  CAS  PubMed  Google Scholar 

  11. Yatin, S.M., Varadarajan, S., Link, C.D. and Butterfield, D.A. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol. Aging 20 (1999) 325–330.

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield, D.A. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic. Res. 36 (2002) 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  13. Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., Levey, A.I., Krafft, G.A., Levy, E.F., Checler, F., Glabe, C., Bilker, W., Abel, T., Schmeidler, J. and Ehrlich, M.E. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol. 68 (2012) 220–230.

    Google Scholar 

  14. Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S.C., Tuohy, J.M., Krafft, G.A., Bonnell, B.S. and Emmerling, M.R. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271 (1996) 20631–20635.

    Article  CAS  PubMed  Google Scholar 

  15. Kirkitadze, M.D. and Kowalska, A. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim. Pol. 52 (2005) 417–423.

    CAS  PubMed  Google Scholar 

  16. Sallowaya, S., Mintzerb, J., Weinerc, M.F. and Cummings, J.L. Diseasemodifying therapies in Alzheimer’s disease. Alzheimer’s Dement. 4 (2008) 65–79.

    Article  Google Scholar 

  17. Bathaie, S.Z. and Mousavi, S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food. Sci. Nutr. 50 (2010) 761–786.

    Article  CAS  PubMed  Google Scholar 

  18. Soeda, S., Ochiai T., Shimeno, H., Saito, H., Abe, K., Tanaka, H. and Shoyama, Y. Pharmacological activities of crocin in saffron. J. Nat. Med. 61 (2007) 102–111.

    Article  CAS  Google Scholar 

  19. Yin, Y.I., Bassit, B., Zhu, L., Yang, X., Wang, C. and Li Y.M. γ-secretase substrate concentration modulates the Aβ42/Aβ40 ratio: Implications for Alzheimer’s disease. J. Biol. Chem. 282 (2007) 23639–23644.

    Article  CAS  PubMed  Google Scholar 

  20. Bolhasani Sanjabi, A., Bathaie, S.Z., Moosavi-Movahedi, A.A. and Ghaffari, M. Separation and purification of some components of Iranian saffron. Asia J. Chem. 17 (2005) 725–729.

    Google Scholar 

  21. Pandreou, M.A., Kanakis, C.D., Polissiou, M.G., Efthimiopoulos, S., Cordopatis, P., Margarity, M. and Lamari, F.N. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 54 (2006) 8762–8768.

    Article  Google Scholar 

  22. Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R. and Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151 (2005) 229–238.

    Article  CAS  PubMed  Google Scholar 

  23. Kirk, W.R., Kurian, E. and Prendergast, F.G. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1’)anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys. J. 70 (1996) 69–83.

    Article  CAS  PubMed  Google Scholar 

  24. Matulis, D., Baumann, C.G., Bloomfield, V.A. and Lovrien, R.E. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49 (1999) 451–458.

    Article  CAS  PubMed  Google Scholar 

  25. Matulis, D. and Lovrien, R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 74 (1998) 422–429.

    Article  CAS  PubMed  Google Scholar 

  26. Kelly, S.M., Jess, T.J. and Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751 (2005) 119–139.

    Article  CAS  PubMed  Google Scholar 

  27. Sureshbabu, N., Kirubagaran, R. and Jayakumar, R. Surfactant-induced conformational transition of amyloid β-peptide. Eur. Biophys. J. 38 (2009) 355–367.

    Article  CAS  PubMed  Google Scholar 

  28. Hasegawa, K., Ono, K., Yamada, M. and Naiki, H. Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41 (2002) 13489–13498.

    Article  CAS  PubMed  Google Scholar 

  29. Naiki, H. and Gejyo, F. Kinetic analysis of amyloid fibril formation. Methods Enzymol. 309 (1999) 305–318.

    Article  CAS  PubMed  Google Scholar 

  30. Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B. and Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273 (1997) 729–739.

    Article  CAS  PubMed  Google Scholar 

  31. Wetzel, R. Ideas of order for amyloid fibril structure. Structure 10 (2002) 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  32. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24 (1999) 329–332.

    Article  CAS  PubMed  Google Scholar 

  33. Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356 (2001) 133–145.

    Article  CAS  PubMed  Google Scholar 

  34. Younkin, S.G. Evidence that Aβ42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 37 (1995) 287–288.

    Article  CAS  PubMed  Google Scholar 

  35. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300 (2003) 486–489.

    Article  CAS  PubMed  Google Scholar 

  36. Ban, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278 (2003) 16462–16465.

    Article  CAS  PubMed  Google Scholar 

  37. Bourhim, M., Kruzel, M., Srikrishnan, T. and Nicotera, T. Linear quantitation of Aβ aggregation using Thioflavin T: Reduction in fibril formation by colostrinin. J. Neurosci. Methods 160 (2007) 264–268.

    Article  CAS  PubMed  Google Scholar 

  38. Nybo, M., Svehag, S.E. and Holm Nielsen, E. An ultrastructural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand. J. Immunol. 49 (1999) 219–223.

    Article  CAS  PubMed  Google Scholar 

  39. Caesar, I., Jonson, M., Nilsson, K.P., Thor, S. and Hammarström, P. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic drosophila. PLoS One 7 (2012) e31424.

    Article  CAS  PubMed  Google Scholar 

  40. Kanski, J., Aksenova, M. and Butterfield, D.A. The hydrophobic environment of Met35 of Alzheimer’s Abeta(1–42) is important for the neurotoxic and oxidative properties of the peptide. Neurotox. Res. 4 (2002) 219–223.

    Article  CAS  PubMed  Google Scholar 

  41. Cardamone, M. and Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 282 (1993) 589–593.

    Google Scholar 

  42. Schein, C.H. Solubility as a function of protein structure and solvent components. Nat. Biotech. 8 (1990) 308–317.

    Article  CAS  Google Scholar 

  43. Serpell, L.C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta vn]1502 (2000) 16–30.

    Google Scholar 

  44. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A. and Picone, D. Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 269 (2002) 5642–5648.

    Article  CAS  PubMed  Google Scholar 

  45. López De La Paz, M., Goldie, K., Zurdo, J., Lacroix, E., Dobson, C.M., Hoenger, A. and Serrano, L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA 99 (2002) 16052–15057.

    Article  PubMed  Google Scholar 

  46. Mishima, K., Tanaka, T., Pu, F., Egashira, N., Iwasaki, K., Hidaka, R., Matsunaga, K., Takata, J., Karube, Y. and Fujiwara, M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci. Lett. 337 (2003) 56–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Ghahghaei.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghahghaei, A., Bathaie, S.Z., Kheirkhah, H. et al. The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro . Cell Mol Biol Lett 18, 328–339 (2013). https://doi.org/10.2478/s11658-013-0092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0092-1

Key words

  • Alzheimer’s disease
  • Neurotic plaques
  • 42
  • Crocin
  • Amyloid
  • Neurofibrillary
  • Aggregation
  • Oligomerization
  • Protofibrils
  • Cytotoxic