Skip to main content
  • Research Article
  • Published:

Smad1 stabilization and delocalization in response to the blockade of BMP activity

Abstract

Signaling at the plasma membrane receptors is generally terminated by some form of feedback regulation, such as endocytosis and/or degradation of the receptors. BMP-Smad1 signaling can also be attenuated by BMP-induced expression of the inhibitory Smads, which are negative regulators of Smad1 transactivation activity and/or BMP antagonists. Here, we report on a novel Smad1 regulation mechanism that occurs in response to the blockade of BMP activity. Lowering the serum levels or antagonizing BMPs with noggin led to upregulation of Smad1 at the protein level in several cell lines, but not to upregulation of Smad5, Smad8 or Smad2/3. The Smad1 upregulation occurs at the level of protein stabilization. Upregulated Smad1 was relocalized to the perinuclear region. These alterations seem to affect the dynamics and amplitude of BMP2-induced Smad1 reactivation. Our findings indicate that depleting or antagonizing BMPs leads to Smad1 stabilization and relocalization, thus revealing an unexpected regulatory mechanism for BMP-Smad1 signaling.

Abbreviations

BMP:

bone morphogenetic proteins

BMPRII:

BMP receptor II

MEFs:

mouse embryonic fibroblasts

References

  1. Clarke, D.C. and Liu, X. Decoding the quantitative nature of TGFbeta/Smad signaling. Trends Cell Biol. 18 (2008) 430–442.

    Article  CAS  PubMed  Google Scholar 

  2. Feng, X.H. and Derynck, R. Specificity and versatility in tgf-beta signaling through Smads. Ann. Rev. Cell Dev. Biol. 21 (2005) 659–693.

    Article  CAS  Google Scholar 

  3. Massague, J. TGF-beta in cancer. Cell 134 (2008) 215–230.

    Article  CAS  PubMed  Google Scholar 

  4. ten Dijke, P. and Hill, C.S. New insights into TGF-beta-Smad signalling. Trends Biochem. Sci. 29 (2004) 265–273.

    Article  PubMed  Google Scholar 

  5. Yamaguchi, K., Nagai, S., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., Ueno, N., Nishida, E., Shibuya, H. and Matsumoto, K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO. J. 18 (1999) 179–187.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, D., Zhao, M. and Mundy, G.R. Bone morphogenetic proteins. Growth Factors 22 (2004) 233–241.

    Article  CAS  PubMed  Google Scholar 

  7. Li, B. Bone morphogenetic protein-Smad pathway as drug targets for osteoporosis and cancer therapy. Endocr. Metab. Immune Disord. Drug Targets 8 (2008) 208–219.

    Article  CAS  PubMed  Google Scholar 

  8. Raftery, L.A. and Umulis, D.M. Regulation of BMP activity and range in Drosophila wing development. Curr. Opin. Cell Biol. 24 (2012) 158–165.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X., Harris, R.E., Bayston, L.J. and Ashe, H.L. Type IV collagens regulate BMP signalling in Drosophila. Nature 455 (2008) 72–77.

    Article  CAS  PubMed  Google Scholar 

  10. Arnold, S.J., Maretto, S., Islam, A., Bikoff, E.K. and Robertson, E.J. Dosedependent Smad1, Smad5 and Smad8 signaling in the early mouse embryo. Dev. Biol. 296 (2006) 104–118.

    Article  CAS  PubMed  Google Scholar 

  11. Varga, A.C. and Wrana, J.L. The disparate role of BMP in stem cell biology. Oncogene 24 (2005) 5713–5721.

    Article  CAS  PubMed  Google Scholar 

  12. Kua, H.Y., Liu, H., Leong, W.F., Li, L., Jia, D., Ma, G., Hu, Y., Wang, X., Chau, J.F., Chen, Y.G., Mishina, Y., Boast, S., Yeh, J., Xia, L., Chen, G.Q., He, L., Goff, S.P. and Li, B. c-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression. Nat. Cell Biol. 14 (2012) 727–737.

    Article  CAS  PubMed  Google Scholar 

  13. Michel, M., Raabe, I., Kupinski, A.P., Perez-Palencia, R. and Bokel, C. Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche. Nat. Commun. 2 (2011) 415.

    Article  PubMed  Google Scholar 

  14. Hardwick, J.C., Kodach, L.L., Offerhaus, G.J. and van den Brink, G.R. Bone morphogenetic protein signalling in colorectal cancer. Nat. Rev. Cancer 8 (2008) 806–812.

    Article  CAS  PubMed  Google Scholar 

  15. Howe, J.R., Bair, J.L., Sayed, M.G., Anderson, M.E., Mitros, F.A., Petersen, G.M., Velculescu, V.E., Traverso, G. and Vogelstein, B. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28 (2001) 184–187.

    Article  CAS  PubMed  Google Scholar 

  16. Ma, G., Li, L., Hu, Y., Chau, J.F., Au, B.J., Jia, D., Liu, H., Yeh, J., He, L., Hao, A. and Li, B. Atypical Atm-p53 genetic interaction in osteogenesis is mediated by Smad1 signaling. J. Mol. Cell Biol. 4 (2012) 118–120.

    Article  CAS  PubMed  Google Scholar 

  17. Chau, J.F., Jia, D., Wang, Z., Liu, Z., Hu, Y., Zhang, X., Jia, H., Lai, K.P., Leong, W.F., Au, B.J., Mishina, Y., Chen, Y.G., Biondi, C., Robertson, E., Xie, D., Liu, H., He, L., Wang, X., Yu, Q. and Li, B. A crucial role for bone morphogenetic protein-Smad1 signalling in the DNA damage response. Nat. Commun. 3 (2012) 836.

    Article  PubMed  Google Scholar 

  18. Sakaguchi, M., Sharmin, S., Taguchi, A., Ohmori, T., Fujimura, S., Abe, T., Kiyonari, H., Komatsu, Y., Mishina, Y., Asashima, M., Araki, E. and Nishinakamura, R. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat. Commun. 4 (2013) 1398.

    Article  PubMed  Google Scholar 

  19. Canalis, E., Economides, A.N. and Gazzerro, E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24 (2003) 218–235.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y.G. Endocytic regulation of TGF-beta signaling. Cell Res. 19 (2009) 58–70.

    Article  PubMed  Google Scholar 

  21. Chen, H.B., Shen, J., Ip, Y.T. and Xu, L. Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev. 20 (2006) 648–653.

    Article  CAS  PubMed  Google Scholar 

  22. Schilling, S.H., Datto, M.B. and Wang, X.F. A phosphatase controls the fate of receptor-regulated Smads. Cell 125 (2006) 838–840.

    Article  CAS  PubMed  Google Scholar 

  23. Lin, X., Duan, X., Liang, Y.Y., Su, Y., Wrighton, K.H., Long, J., Hu, M., Davis, C. M., Wang, J., Brunicardi, F.C., Shi, Y., Chen, Y.G., Meng, A. and Feng, X.H. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125 (2006) 915–928.

    Article  CAS  PubMed  Google Scholar 

  24. Kokabu, S., Nojima, J., Kanomata, K., Ohte, S., Yoda, T., Fukuda, T. and Katagiri, T. Protein phosphatase magnesium-dependent 1A-mediated inhibition of BMP signaling is independent of Smad dephosphorylation. J. Bone Miner. Res. 25 (2010) 653–660.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, R., Yamashita, M., Zhang, Q., Zhou, Q., Chen, D., Reynolds, D.G., Awad, H.A., Yanoso, L., Zhao, L., Schwarz, E.M., Zhang, Y.E., Boyce, B.F. and Xing, L. Ubiquitin ligase Smurf1 mediates tumor necrosis factorinduced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J. Biol. Chem. 283 (2008) 23084–23092.

    Article  CAS  PubMed  Google Scholar 

  26. Wu, W.K., Sung, J.J., Yu, L., and Cho, C.H. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling. Biochem. Biophys. Res. Commun. 371 (2008) 209–214.

    Article  CAS  PubMed  Google Scholar 

  27. Fuentealba, L.C., Eivers, E., Ikeda, A., Hurtado, C., Kuroda, H., Pera, E.M. and De Robertis, E.M. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131 (2007) 980–993.

    Article  CAS  PubMed  Google Scholar 

  28. Osada, S., Ohmori, S.Y. and Taira, M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130 (2003) 1783–1794.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, X. and Xu, L. Specific nucleoporin requirement for Smad nuclear translocation. Mol. Cell Biol. 30 (2010) 4022–4034.

    Article  CAS  PubMed  Google Scholar 

  30. Yao, X., Chen, X., Cottonham, C. and Xu, L. Preferential utilization of Imp7/8 in nuclear import of Smads. J. Biol. Chem. 283 (2008) 22867–22874.

    Article  CAS  PubMed  Google Scholar 

  31. Takashima, S. and Hartenstein, V. Genetic control of intestinal stem cell specification and development: a comparative view. Stem Cell Rev. 8 (2012) 597–608.

    Article  PubMed  Google Scholar 

  32. He, X.C., Zhang, J., Tong, W.G., Tawfik, O., Ross, J., Scoville, D.H., Tian, Q., Zeng, X., He, X., Wiedemann, L.M., Mishina, Y. and Li, L. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-betacatenin signaling. Nat. Genet. 36 (2004) 1117–1121.

    Article  CAS  PubMed  Google Scholar 

  33. Powell, D.W., Pinchuk, I.V., Saada, J.I., Chen, X. and Mifflin, R.C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol. 73 (2011) 213–237.

    Article  CAS  PubMed  Google Scholar 

  34. Medema, J.P. and Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474 (2011) 318–326.

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita, M., Ying, S.X., Zhang, G.M., Li, C., Cheng, S.Y., Deng, C.X. and Zhang, Y.E. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121 (2005) 101–113.

    Article  CAS  PubMed  Google Scholar 

  36. Cao, Y. and Zhang, L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol. Life Sci. (2012) DOI 10.1007/s00018-012-1170-7

    Google Scholar 

  37. Inui, M., Manfrin, A., Mamidi, A., Martello, G., Morsut, L., Soligo, S., Enzo, E., Moro, S., Polo, S., Dupont, S., Cordenonsi, M. and Piccolo, S. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol. 13 (2011) 1368–1375.

    Article  CAS  PubMed  Google Scholar 

  38. Chong, P.A., Lin, H., Wrana, J.L. and Forman-Kay, J.D. Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity. Proc. Natl. Acad. Sci.USA 107 (2010) 18404–18409.

    Article  CAS  PubMed  Google Scholar 

  39. Sangadala, S., Metpally, R.P. and Reddy, B.V. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6 — modeling and analysis. J. Biomol. Struct. Dyn. 25 (2007) 11–23.

    Article  CAS  Google Scholar 

  40. Cao, Y. and Zhang, L. Pharmaceutical perspectives of HECT-TYPE ubiquitin ligase Smurf1. Curr. Pharm. Des. (2012)

    Google Scholar 

  41. Matsuzaki, K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis 32 (2011) 1578–1588.

    Article  CAS  PubMed  Google Scholar 

  42. Lorente-Trigos, A., Varnat, F., Melotti, A. and Ruiz i Altaba, A. BMP signaling promotes the growth of primary human colon carcinomas in vivo. J. Mol. Cell Biol. 2 (2010) 318–332.

    Article  CAS  PubMed  Google Scholar 

  43. Vuilleumier, R., Springhorn, A., Patterson, L., Koidl, S., Hammerschmidt, M., Affolter, M. and Pyrowolakis, G. Control of Dpp morphogen signalling by a secreted feedback regulator. Nat. Cell Biol. 12 (2010) 611–617.

    Article  CAS  PubMed  Google Scholar 

  44. Gloerich, M., ten Klooster, J.P., Vliem, M.J., Koorman, T., Zwartkruis, F.J., Clevers, H. and Bos, J.L. Rap2A links intestinal cell polarity to brush border formation. Nat. Cell Biol. 14 (2012) 793–801.

    Article  CAS  PubMed  Google Scholar 

  45. van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Nee, A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., Martens, A.C., Barker, N., van Oudenaarden, A. and Clevers, H. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14 (2012) 1099–1104.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, J., Chau, J.F.L. et al. Smad1 stabilization and delocalization in response to the blockade of BMP activity. Cell Mol Biol Lett 18, 340–354 (2013). https://doi.org/10.2478/s11658-013-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0093-0

Key words