Skip to main content
  • Review
  • Published:

Tubulin-interactive stilbene derivatives as anticancer agents

Abstract

Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.

Abbreviations

AIA:

angiogenesis-inhibiting agents

BAD:

Bcl-2-associated death promoter

Bcl-2:

B-cell lymphoma 2

Bcl-xl:

B-cell lymphoma extra large

CA-1:

combretastatin A-1

CA-2:

combretastatin A-2

CA-3:

combretastatin A-3

CA-4:

combretastatin A-4

CA-1P:

combretastatin A-1 diphosphate, OXi4503

CA-4P:

combretastatin A-4 phosphate, Zybrestat

CB-1:

combretastatin B-1

CB-2:

combretastatin B-2

CDC2:

cell division control protein 2

CDK1:

cyclin-dependent kinase 1

CoMFA:

comparative molecular field analysis

DAMA-colchicine:

N-deacetyl-N-(2-mercaptoacetyl)-colchicine

ERK:

extracellular signal-regulated kinase

GTP:

guanosine-5′-triphosphate

GDP:

guanosine-5′-diphosphate

HIF-1α:

hypoxiainducible factor 1α

HNSCC:

head and neck squamous cell carcinoma

HUVECs:

human umbilical vein endothelial cells

iNOS:

inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

LY290181:

2-amino-4-(3-pyridyl)-4H-naphtho(1,2-b)pyran-3-carbonitrile

MAPs:

microtubule-associated proteins

MAPKs:

mitogen-activated protein kinases

MIA:

microtubule-interfering agents

MRP-1:

multidrug resistance protein 1

MRP-3:

multidrug resistance protein 3

SAR:

structure-activity relationship

SPA:

Special Protocol Assessment

+TIPs:

plus-and-tracking proteins

VDAs:

vascular disrupting agents

VEGF:

vascular endothelial growth factor

VEGFR2:

VEGF receptor 2

VTAs:

vascular targeting agents

References

  1. Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25 (2008) 475–516.

    Article  CAS  PubMed  Google Scholar 

  2. Pettit, G.R., Cragg, G.M., Herald, D.L., Schmidt, J.M. and Lobavanijaya, P. Antineoplastic agents. Part 84. Isolation and structure of combretastatin. Can. J. Chem. 60 (1982) 1374–1376.

    Article  CAS  Google Scholar 

  3. Tron, G.C., Pirali, T., Sorba, G., Pagliai, F., Busacca, S. and Genazzani, A. Medicinal chemistry of combretastatin A-4: present and future directions. J. Med. Chem. 49 (2006) 3033–3044.

    Article  CAS  PubMed  Google Scholar 

  4. Siemann, D.W., Chaplin, D.J. and Walicke, P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Exp. Opin. Invest. Drugs 18 (2009) 189–197.

    Article  CAS  Google Scholar 

  5. Desai, A. and Mitchison, T.J. Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol. 13 (1997) 83–117.

    Article  CAS  Google Scholar 

  6. Nogales, E., Wolf, S.G., and Downing, K.H. Structure of the αβ-tubulin dimer by electron crystallography. Nature 391 (1998) 199–203.

    Article  CAS  PubMed  Google Scholar 

  7. Mitchison, T. and Kirscher, M. Microtubule assembly nucleated by isolated centrosomes. Nature 312 (1984) 232–237.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, H.W. and Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435 (2005) 911–915.

    Article  CAS  PubMed  Google Scholar 

  9. Akhmanova, A., and Steinmetz, M.O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9 (2008) 309–322.

    Article  CAS  PubMed  Google Scholar 

  10. Kline-Smith, S.L. and Walczak, C.E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15 (2004) 317–327.

    Article  CAS  PubMed  Google Scholar 

  11. Kwon, M. and Scholey, J.M. Spindle mechanics and dynamics during mitosis in Drosophila. Trends Cell Biol. 14 (2004) 194–205.

    Article  CAS  PubMed  Google Scholar 

  12. Rieder, C.L., Davison, E.A., Jensen, L.C., Cassimeris, L. and Salomon, E.D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103 (1986) 581–591.

    Article  CAS  PubMed  Google Scholar 

  13. Higuchi, T. and Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433 (2005) 171–176.

    Article  CAS  PubMed  Google Scholar 

  14. Rieder, C.L., Schultz, A., Cole, R. and Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127 (1994) 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  15. Jordan, M.A. and Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4 (2004) 253–265.

    Article  CAS  PubMed  Google Scholar 

  16. Singh, P., Rathinasamy, K., Mohan, R. and Panda, D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 60 (2008) 368–375.

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharyya, B., Panda, D., Gupta, S., and Banerjee, M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 28 (2008) 155–183.

    Article  CAS  PubMed  Google Scholar 

  18. Ravelli, R.B., Gigant, B., Curmi P.A., Jourdain, I., Lachkar, S., Sobel, A. and Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428 (2004) 198–202.

    Article  CAS  PubMed  Google Scholar 

  19. Gigant, B., Wang, C., Ravelli, R.B.G., Roussi, F., Steinmetz, M.O., Curmi, P.A., Sobel, A. and Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature 435 (2005) 519–522.

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborti, S., Das, L., Kapoor, N., Das, A., Dwivedi, V., Poddar, A., Chakraborti, G., Janik, M., Basu, G., Panda, D., Chakrabarti, P., Surolia, A. and Bhattacharyya, B. Curcumin recognizes a unique binding site of tubulin. J. Med. Chem. 54 (2011) 6183–6196.

    Article  CAS  PubMed  Google Scholar 

  21. Kingston, D.G.I. Tubulin-interactive natural products as anticancer agents. J. Nat. Prod. 72 (2009) 507–515.

    Article  CAS  PubMed  Google Scholar 

  22. Nogales, E., Wolf, S.G., Khan, I.A., Luduena, R.F. and Downing, K.H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375 (1995) 424–427.

    Article  CAS  PubMed  Google Scholar 

  23. Li, H., Wu, W.K.K., Zheng, A., Che, C.T., Yu, L., Li, Z.J., Wu, Y.C., Cheng, K.-W., Yu, J., Cho, C.H. and Wang, M. 2,3′,4,4′,5′-Pentamethoxytrans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 78 (2009) 1224–1232.

    Article  CAS  PubMed  Google Scholar 

  24. Goncalves, A., Braguer, D., Carles, G., Andre, N., Prevot, C. and Briand, C. Caspase-8 activation independent of CD95/CD95-L interaction during paclitaxel-induced apoptosis in human colon cancer (HT29-D4). Biochem. Pharmacol. 60 (2000) 1579–1584.

    Article  CAS  PubMed  Google Scholar 

  25. Siemann, D.W., Bibby, M.C., Dark, G.G., Dicker, A.P., Eskens, F.A., Horsman, M.R., Marmé, D. and LoRusso, P.M. Differentiation and definition of vascular-targeted therapies. Clin. Cancer Res. 11 (2005) 416–420.

    CAS  PubMed  Google Scholar 

  26. Mason, R.P., Zhao, D., Liu, L., Trawick, M.L. and Pinney, K.G. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr. Biol (Camb.) 3 (2011) 375–387.

    Article  CAS  Google Scholar 

  27. Siemann, D.W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 37 (2011) 63–74.

    Article  CAS  PubMed  Google Scholar 

  28. Jockowich, M.E., Suarez, F., Alegret, A., Pina, Y., Hayden, B., Cebulla, C., Feuer, W. and Murray, T.G. Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model. Invest. Ophthalmol. Vis. Sci. 48 (2007) 5371–5376.

    Article  Google Scholar 

  29. Nambu, H., Nambu, R., Melia, M. and Campochiaro, P.A. Combretastatin A-4 phosphate supresses development and induces regression of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44 (2003) 3650–3655.

    Article  PubMed  Google Scholar 

  30. Ma, L., Liu, Y.L., Ma, Z.Z., Dou, H.L., Xu, J.H., Wang, J.C., Zhang, X. and Zhang, Q. Targeted treatment of choroidal neovascularization using integrinmediated sterically stabilized liposomes loaded with combretastatin A4. J. Ocul. Pharmacol. Ther. 25 (2009) 195–200.

    Article  CAS  PubMed  Google Scholar 

  31. Pettit, G.R. and Singh, S., Antineoplastic agents. Part 130. Isolation, structure and synthesis of combretastatins A-2, A-3, and B-2. Can. J. Chem. 65 (1987) 2390–2396.

    Article  CAS  Google Scholar 

  32. Pettit, G.R., Singh, S.B., Niven, M.L., Hamel, E. and Schmidt, J.M. Antineoplastic agents. Part 123. Isolation, structure, and synthesis of combretastatin A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod. 50 (1987) 119–131.

    Article  CAS  PubMed  Google Scholar 

  33. Pettit, G.R., Singh, S.B., Niven, M.L., Hamel, E., Lin, C.M., Alberts, D.S. and Garcia-Kendall, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 45 (1989) 209–211.

    Article  CAS  PubMed  Google Scholar 

  34. Pinney, K.G., Pettit, G.R., Trawick, M.L., Jelinek, C. and Chaplin, D.J. The discovery and development of the combretastatins. in: Anticancer Agents from Natural Products, (Cragg, G.R., Kingston, D.G.I. and Newman, D.J. Eds.) 2nd edition, CRC Press/Taylor & Francis, Boca Raton, FL, 2012, 27–63.

    Google Scholar 

  35. Chaudhary, A., Pandeya, S.N., Kumar, P., Sharma, P., Gupta, S., Soni, N., Verma, K.K. and Bhardwaj, G. Combretastatin A-4 Analogs as Anticancer Agents. Mini-Rev. Med. Chem. 7 (2007) 1186–1205.

    Article  CAS  PubMed  Google Scholar 

  36. Tozer, G.M., Kanthou, C., Parkins, C.S. and Hill, S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol. 83 (2001) 21–38.

    Article  Google Scholar 

  37. Thorpe, E.P. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res. 10 (2004) 415–427.

    Article  PubMed  Google Scholar 

  38. Xia, Y., Yang, A.-Y., Xia, P., Bastow, K.F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hacki, T. and Lee, K.-H. J. Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2′,3′,4′-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of anti-mitotic antitumor agents. Med. Chem. 41 (1998) 1155–1162.

    Article  CAS  Google Scholar 

  39. Wu, M., Sun, Q., Yang, C., Chen, D., Ding, J., Chen, Y., Lin, L. and Xie, Y. Synthesis and activity of combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. Bioorg. Med. Chem. Lett. 17 (2007) 869–873.

    Article  CAS  PubMed  Google Scholar 

  40. Sriram, M., Hall, J.J., Grohmann, N.C., Strecker, T.E., Wootton, T., Franken, A., Trawick, M.L. and Pinney, K.G. Design, synthesis and biological evaluation of dihydronaphthalene and benzosuberene analogs of the combretastatins as inhibitiors of tubulin polymerization in cancer chemotherapy. Bioorg. Med. Chem. 16 (2008) 8161–8171.

    Article  CAS  PubMed  Google Scholar 

  41. Pettit, G.R., Toki, B.E., Herald, D.L., Boyd, M.R., Hamel, E., Pettit, R.K. and Chapuis, J.-C. J. Antineoplastic agents. 410. Asymetric hydroxylation of trans-combretastatin A-4. Med. Chem. 42 (1999) 1459–1465.

    Article  CAS  Google Scholar 

  42. Cai, S.X. Small molecule vascular disrupting agents: potential new drugs for cancer treatment. Recent Pat. Anticancer Drug Discov. 2 (2007) 79–101.

    Article  CAS  PubMed  Google Scholar 

  43. Salmon, H.W. and Siemann, D.W. Effect of the second generation vascular disrupting agent OXi4503 on tumor vascularity. Clin. Cancer Res. 12 (2006) 4090–4094.

    Article  CAS  PubMed  Google Scholar 

  44. Thomson, P., Naylor, M.A., Everett, S.A., Stratford, H.R.L., Lewis, G., Hill, S., Patel, K.B., Wardman, P. and Davis, P.D. Synthesis and biological properties of bioreductively targeted nitrothienyl prodrugs of combretastatin A-4. Mol. Cancer Ther. 5 (2006) 2886–2894.

    Article  CAS  PubMed  Google Scholar 

  45. Calligaris, D., Verdier-Pinard, P., Devred, F., Villard, C., Braguer, D. and Lafitte, D. Microtubule targeting agents: from biophysics to proteomics. Cell. Mol. Life Sci. 67 (2010) 1089–1104.

    Article  CAS  PubMed  Google Scholar 

  46. Griggs, J., Skepper, J.N., Smith, G.A., Brindle, K.M., Metcalfe, J.C. and Hesketh, R. Inhibition of proliferative retinopathy by the antivascular agent combretastatin A-4. Am. J. Pathol. 160 (2002) 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  47. Delmonte, A. and Sessa, C. AVE8062: A new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs 18 (2009) 1541–1548.

    Article  CAS  PubMed  Google Scholar 

  48. Kim, T.J., Ravoori, M., Landen, C.N., Kamatt, A.A., Han, L.Y., Lu, C., Lin, Y.G., Merritt, W.M., Jennings, N., Spannuth, W.A., Langley, R., Gershenson, D.M., Coleman, R.L., Kundra, V. and Sood, A.K. Antitumor and antivascular effects of AVE8062 in ovarian carcinoma. Cancer Res. 67 (2007) 9337–9345.

    Article  CAS  PubMed  Google Scholar 

  49. Pettit, G.R., Rosenberg, H.J., Dixon, R., Knight, J.C., Hamel, E., Chapuis, J.C., Pettit, R.K., Hogan, F., Sumner, B., Ain, K.B. and Trickey-Platt, B. Antineoplastic agents. 548. Synthesis of iodo- and diiodocombstatin phosphate prodrugs. J. Nat. Prod. 75 (2012) 385–393.

    Article  CAS  PubMed  Google Scholar 

  50. Baur, J.A. and Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 5 (2006) 493–506.

    Article  CAS  PubMed  Google Scholar 

  51. Szekeres, T., Fritzer-Szekeres, M., Saiko, P. and Jaeger, W. Resveratrol and resveratrol analogues — structure-activity relationship. Pharm. Res. 27 (2010) 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  52. Schneider, Y., Chabert, P., Stutzmann, J., Coelho, D., Fougerousse, A., Gosse, F. Launay, J.-F., Brouillard, R. and Raul, F. Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int. J. Cancer 107 (2003) 189–196.

    Article  CAS  PubMed  Google Scholar 

  53. Mazué, F., Colin, D., Gobbo, J., Wegner, M., Rescifina, A., Spatafora, C., Fasseur, D., Delmas, D., Meunier, P., Triangli, C. and Latruffe, N. Structural determinants of resveratrol for cell proliferation inhibition potency. Experimental and docking studies of new analogs. Eur. J. Med. Chem. 45 (2010) 2972–2980.

    Article  PubMed  CAS  Google Scholar 

  54. Sale, S., Verschoyle, R.D., Boockock, D., Jones, D.J.N., Wilsher, N., Potter, G.A., Farmer, P.B., Steward, W.P. and Gescher, A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans-3,4,5,4′-tetramethoxystilbene. Br. J. Cancer 90 (2004) 736–744.

    Article  CAS  PubMed  Google Scholar 

  55. Sale, S., Tunstall, R.G., Ruparelia, K.C., Potter, G.A., Steward, W.P. and Gescher, A.J. Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans-3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the ApcMin+ mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int. J. Cancer 115 (2005) 194–201.

    Article  CAS  PubMed  Google Scholar 

  56. Ma, Z., Molavi, O., Haddadi, A., Lai, R., Gossage, R.A. and Lavasanifar, A. Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) mediates antitumor effects via mechanism different from that of resveratrol. Cancer Chemother. Pharmacol. 63 (2008) 27–35.

    Article  CAS  PubMed  Google Scholar 

  57. Park, H., Aiyar, S.E., Fan, P., Wang, J., Yue, W., Okouneva, T., Cox, C., Jordan, M.A., Demers, L., Cho, H., Kim, S., Song, R.X.-D. and Santen, R.J. Effects of tetramethoxystilbene on hormone-resistant breast cancer cells: biological and biochemical mechanisms of action. Cancer Res. 67 (2007) 5717–5726.

    Article  CAS  PubMed  Google Scholar 

  58. Li, H., Wu, W.K.K., Li, Z.J., Chan, K.M., Wong, C.C.M., Ye, C.G., Yu, L., Sung, J.J.Y., Cho, C.H. and Wang, M. 2,3′,4,4′,5′-Pentamethoxy-transstilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice. Br. J. Pharmacol. 160 (2010) 1352–1361.

    Article  CAS  PubMed  Google Scholar 

  59. Hsieh, H.P., Liou, J.P. and Mahindroo, N. Pharmaceutical design of antimitotic agents on combretastatins. Curr. Pharm. Des. 11 (2005) 1655–1677.

    Article  CAS  PubMed  Google Scholar 

  60. Hall, J.J., Sriram, M., Strecker, T.E., Tidmore, J.K., Jelinek, C.J., Kumar, G.D.K., Hadimani, M.B., Pettit, G.R., Chaplin, D.J., Trawick, M.L. and Pinney, K.G. Design, synthesis, biochemical, and biological evaluation of nitrogencontaining trifluoro structural modifications of combretastatin A-4. Bioorg. Med. Chem. Lett. 18 (2008) 5146–5149.

    Article  CAS  PubMed  Google Scholar 

  61. Dyrager, C., Wickström, M., Fridén-Saxin, M., Friberg, A., Dahlén, K., Wallén, E.A.A., Gullbo, J., Grøtli, M. and Luthman, K. Inhibitors and promoters of tubulin polymerization: synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem. 19 (2011) 2659–2665.

    Article  CAS  PubMed  Google Scholar 

  62. Cai, Y.-C., Zou, Y., Ye, Y.-L., Sun, H.-Y., Su, Q.-G., Wang, Z.-X., Zeng, Z.-L. and Xian L.-J. Anti-tumor activity and mechanisms of a novel vascular disrupting agent, (Z)-3,4′,5-trimethoxylstilbene-3′-O-phosphate disodium (M410). Invest. New Drugs 29 (2011) 300–311.

    Article  CAS  PubMed  Google Scholar 

  63. Hatanaka, T., Fujita, K., Ohsumi, K., Nakagawa, R., Fukuda, Y., Nihei, Y., Suga, Y., Akiyama, Y. and Tsuji, T. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg. Med. Chem. Lett. 8 (1998) 3371–3374.

    Article  CAS  PubMed  Google Scholar 

  64. Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A.K., Lin, C.M. and Hamel, E. Synthesis and evaluation of analogues of (Z)-l-(4-methoxyphenyl)-2-(3,4,5 trimethoxyphenyl)ethene as potential cytotoxic and anti-mitotic agents. J. Med. Chem. 35 (1992) 2293–2360.

    Article  CAS  PubMed  Google Scholar 

  65. Pinney, K.G., Meija, M.P., Villalobos, V.M., Rosenquist, B.E., Pettit, G.R., Verdier-Pinard, P. and Hamel, E. Synthesis and biological evaluation of aryl azide derivatives of combretastatin A-4 as molecular probes for tubulin. Bioorg. Med. Chem. 8 (2000) 2417–2425.

    Article  CAS  PubMed  Google Scholar 

  66. Monk, K.A., Siles, R., Hadimani, M.B., Mugabe, B.E., Ackley, J.F., Studerus, S.W., Edvardsen, K., Trawick, M.L., Garner, C.M., Rhodes, M.R., Pettit, G.R. and Pinney, K.G. Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents. Bioorg. Med. Chem. 14 (2006) 3231–3244.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, L., Woods, K.W., Li, Q., Barr, K.J., McCroskey, R.W., Hannick, S.M., Gherke, L., Credo, R.B., Hui, Y.H., Marsh, K, Warner, R., Lee, J.Y., Zielinski-Mozng, N., Frost, D., Rosenberg, S.H. and Sham, H.L. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem. 45 (2002) 1697–1711.

    Article  CAS  PubMed  Google Scholar 

  68. Schobert, R., Biersack, B., Dietrich, A., Effenberger-Neidnicht, K., Knauer, S. and Mueller, T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J. Med. Chem. 53 (2010) 6595–6602.

    Article  CAS  PubMed  Google Scholar 

  69. Bonezzi, K., Taraboletti, G., Borsotti, P., Bellina, F., Rossi, R. and Giavazzi, R. Vascular disrupting activity of tubulin-binding 1,5-diaryl-1H-imidazoles. J. Med. Chem. 52 (2009) 7906–7910.

    Article  CAS  PubMed  Google Scholar 

  70. Ohsumi, K., Hatanaka, T., Fujita, K., Nakagawa, R., Fukuda, Y., Nihei, Y., Suga, Y., Morinaga, Y., Akiyama, Y. and Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett. 8 (1998) 3153–3158.

    Article  CAS  PubMed  Google Scholar 

  71. Romagnoli, R., Baraldi, P.G., Brancale, A., Ricci, A., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Convergent synthesis and biological evaluation of 2-amino-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as microtubule targeting agents. J. Med. Chem. 54 (2011) 5144–5153.

    Article  CAS  PubMed  Google Scholar 

  72. Romagnoli, R., Baraldi, P.G., Salvador, M.K., Camacho, M.E., Preti, D., Tabrizi, M.A., Bassetto, M., Brancale, A., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorg. Med. Chem. 20 (2012) 7083–7094.

    Article  CAS  PubMed  Google Scholar 

  73. Tron, G.C., Pagliai, F., Sel Grosso, E., Genazzani, A.A. and Sorba, G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem. 48 (2005) 3260–3258.

    Article  CAS  PubMed  Google Scholar 

  74. Pirali, T., Busacca, S., Beltrami, L., Imovilli, D., Pagliali, F., Miglio, G., Massarotti, A., Verotta, L., Tron, G.C., Sorba, G. and Genazzani, A.A. Synthesis and cytotoxic evaluation of combretafurans, potential scaffolds for dual action of antitumoral agents. J. Med. Chem. 49 (2006) 5372–5376.

    Article  CAS  PubMed  Google Scholar 

  75. Theeramunkong, S., Caldarelli, A., Massarotti, A., Aprile, S., Caprioglio, S., Zaninetti, R., Teruggi, A., Pirali, T., Grosa, G. and Tron, G.C. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J. Med. Chem. 54 (2011) 4977–4986.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, W., Yang, Q., Wu, Y., Wu, L., Li, W., Qiao, F., Bao, K. and Zhang, L. Preparation of 2,3-diarylthiophene derivatives as antitumor agents. CN patent 101429189, 2009.

    Google Scholar 

  77. Qiao, F., Zuo, D., Shen, X., Qi, H., Wang, H., Zhang, W. and Wu, Y. DAT-230, a novel microtubule inhibitor, exhibits potent anti-tumor activity by inducing G2/M phase arrest, apoptosis in vitro and perfusion decrease in vivo to HT-1080. Cancer Chemother. Pharmacol. 70 (2012) 259–270.

    Article  CAS  PubMed  Google Scholar 

  78. Liu, T., Dong, X., Xue, N., Wu, R., He, Q., Yang, B. and Hu, Y. Synthesis and biological evaluation of 3,4-biaryl-5-aminoisoxazole derivatives. Bioorg. Med. Chem. 17 (2009) 6279–6285.

    Article  CAS  PubMed  Google Scholar 

  79. Sun, C.-N., Lin, L.-G., Yu, H.-J., Cheng, C.-Y. and Tsai, Y.-C. Synthesis and cytotoxic activities of 4,5-diarylisoxazoles. Bioorg. Med. Chem. Lett. 17 (2007) 1078–1081.

    Article  CAS  PubMed  Google Scholar 

  80. Schobert, R., Effenberger-Neidnicht, K. and Biersack, B. Stable combretastatin A-4 analogues with sub-nanomolar efficacy against chemoresistant HT-29 cells. Int. J. Clin. Pharmacol. Ther. 49 (2011) 71–72.

    CAS  PubMed  Google Scholar 

  81. Biersack, B., Effenberger, K., Schobert, R. and Ocker, M. Oxazole-bridged combretastatin A analogues with improved anticancer properties. ChemMedChem. 3 (2010) 420–427.

    Article  CAS  Google Scholar 

  82. Akselsen, O.W., Odlo, K., Cheng, J-J., Maccari, G., Botta, M. and Hansen, T.V. Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg. Med. Chem. 20 (2012) 234–242.

    Article  CAS  PubMed  Google Scholar 

  83. Romagnoli, R., Baraldi, P.G., Cruz-Lopez, O., Lopez-Cara, C., Carrion, M.D., Brancale, A., Hamel, E., Chen, L., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles as cisrestricted combretastatin analogs. J. Med. Chem. 53 (2010) 4248–4258.

    Article  CAS  PubMed  Google Scholar 

  84. Odlo, K., Hentzen, J., Fournier dit Chabert, J., Ducki, S., Gani, O.A.B.S.M., Sylte, I., Skrede, M., Flørenes, V.A. and Hansen, T.V. 1,5-disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4: synthesis, molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin. Bioorg. Med. Chem. 16 (2008) 4829–4838.

    Article  CAS  PubMed  Google Scholar 

  85. Odlo, K., Fournier-Dit-Chabert, J., Ducki, S., Gani, O.A.B.S.M., Sylte, I. and Hansen, T.V. 1,2,3-Triazole analogs of combretastatin A-4 as potential microtubule-binding agents. Bioorg. Med. Chem. 18 (2010) 6874–6885.

    Article  CAS  PubMed  Google Scholar 

  86. Romagnoli, R., Baraldi, P.G., Salvador, M.K., Preti, D., Tabrizi, M.D., Brancale, A., Fu, X.H., Li, J., Zhang, S.Z., Hamel, E., Bortolozzi, R., Basso, G. and Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem. 54 (2012) 475–488.

    Article  CAS  Google Scholar 

  87. Shirai, R., Takayama, H., Nishikawa, A., Koiso, Y. and Hashimoto, Y. Asymetric synthesis of anti-mitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells. Bioorg. Med. Chem. Lett. 8 (1998) 1997–2000.

    Article  CAS  PubMed  Google Scholar 

  88. Pettit, R.K., Pettit, G.R., Hamel, E., Hogan, F., Moser, B.R., Wolf, S., Pon, S., Chapuis, J-C. and Schmidt, J.M. E-combretastatin and E-resveratrol structural modifications: Antimicrobial and cancer cell growth inhibitory β-E-nitrostyrenes. Bioorg. Med. Chem. 17 (2009) 6606–6612.

    Article  CAS  PubMed  Google Scholar 

  89. Dark, G.G., Hill, S.A., Prise, V.E., Tozer, G.M., Pettit, G.R. and Chaplin, D.J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57 (1997) 1829–1834.

    CAS  PubMed  Google Scholar 

  90. Hori, K., Saito, S., Nihei, Y., Suzuki, M. and Sato, Y. Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn. J. Cancer Res. 90 (1999) 1026–1038.

    Article  CAS  PubMed  Google Scholar 

  91. Sheng, Y., Hua, J., Pinney, K.G., Garner, C.M., Kane, R.R., Prezioso, J.A., Chaplin, D.J and Edvardsen, K. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int. J. Cancer 111 (2004) 604–610.

    Article  CAS  PubMed  Google Scholar 

  92. Clémenson, C., Jouannot, E., Merino-Trigo, A., Rubin-Carrez, C. and Deutsch, E. The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models. Invest. New Drugs 31 (2013) 273–284.

    Article  PubMed  CAS  Google Scholar 

  93. Rajak, H., Dewangan, P.K., Patel, V., Jain, D.K., Singh, A., Veerasamy, R., Sharma, P.C. and Dixit, A. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cisrestricted isomers. Curr. Pharm. Des. 19 (2013) 1923–1955.

    Article  CAS  PubMed  Google Scholar 

  94. Brakenhielm, E., Cao, R. and Cao, Y. Suppression of angiogenesis, tumor growth and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 15 (2001) 1798–1800.

    CAS  PubMed  Google Scholar 

  95. Tseng, S.H., Lin, S.M., Chen, J.C., Su, Y.H., Huang, H.Y., Chen, C.K., Lin, P.Y. and Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res. 10 (2004) 2190–2202.

    Article  CAS  PubMed  Google Scholar 

  96. Kundu, J.K. and Surh, Y.-J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 269 (2008) 243–261.

    Article  CAS  PubMed  Google Scholar 

  97. Belleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L.A. and Presta, M. Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol. Pharmacol. 67 (2005) 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  98. Alex, D., Leon, E.C., Zhang, Z.-J., Yan, G.T.H., Cheng, S.H., Leong, C.-W., Li, Z.-H., Lam, K.-H., Chan, S.-W. and Lee, S.M.-Y. Resveratrol derivative, trans-3,5,4′-trimethoxystilbene, exerts antiangiogenic and vasculardisrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation. J. Cell. Biochem. 109 (2010) 339–346.

    CAS  PubMed  Google Scholar 

  99. Folkes, L.K., Christlieb, M., Madej, E., Stratford, M.R.L. and Wardman, P. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem. Res. Toxicol. 20 (2007) 1885–1894.

    Article  CAS  PubMed  Google Scholar 

  100. Rice, L., Pampo, C., Lepler, S., Rojiani, A.M. and Siemann, D.W. Support of a free radical mechanism for enhanced antitumor efficacy of the microtubule disruptor OXi4503. Microvasc. Res. 81 (2011) 44–51.

    Article  CAS  PubMed  Google Scholar 

  101. Madlambayan, G.J., Meacham, A.M., Hosaka, K., Mir, S., Jorgensen, M., Scott, E.W., Siemann, D.W. and Cogle, C.R. Leukemia regression by vascular disruption and anti-angiogenic therapy. Blood 116 (2010) 1539–1547.

    Article  CAS  PubMed  Google Scholar 

  102. Peláez, R., López, J.L. and Medarde, M. Application of chemoinformatic tools for the analysis of virtual screening studies of tubulin inhibitors. Advances in Soft Computing 44 (2007) 411–441.

    Article  Google Scholar 

  103. Nguyen, T.L., McGrath, C., Hermone, A.R., Burnett, C.J., Zharevitz, D.W., Day, B.W., Wipf, P., Hamel, E. and Gussio, R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 48 (2005) 6107–6116.

    Article  CAS  PubMed  Google Scholar 

  104. Massarotti, A., Theeramunkong, S., Mesenzani, O., Caldarelli, A., Genazzani, A.A. and Tron, G.C. Identification of novel antitubulin agents by using a virtual screening approach based on 7-point pharmacophore model of the tubulin colchicine site. Chem. Biol. Drug Des. 78 (2011) 913–922.

    Article  CAS  PubMed  Google Scholar 

  105. Kim, N.D., Park, E.-S., Kim, Y.H., Moon, S.K., Lee, S. S., Ahn, S.K., Yu, D.-Y., No, K.T. and Kim, K.-H. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg. Med. Chem. 18 (2010) 7092–7100.

    Article  CAS  PubMed  Google Scholar 

  106. Massarotti, A., Coluccia, A., Silvestri, R., Sorba, G. and Brancale, A. The tubulin colchicine domain: a molecular modeling perspective. Chem. Med. Chem. 7 (2012) 33–42.

    CAS  PubMed  Google Scholar 

  107. Romagnoli, R., Baraldi, P.G., Carrion, M.D., Cruz-Lopez, O., Cara, C.L., Tolomeo, M., Grimaudo, S., Di Cristina, A., Pipitone, M.R., Balzarini, J., Kandil, S., Brancale, A., Srkar, T. and Hamel, E. Synthesis and biological evaluation of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-6-substituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives as anti-mitotic agents and inhibitors of tubulin polymerization. Bioorg. Med. Chem. Lett. 18 (2008) 5041–5045.

    Article  CAS  PubMed  Google Scholar 

  108. Ruan, B.-F., Lu, X., Tang, J.-F., Wei, Y., Wang, X.-L., Zhang, Y.-B., Wang, L.-S. and Zhu, H.-L. Synthesis, biological evaluation, and molecular docking studies of resveratrol derivatives possessing chalcone moiety as potential antitubulin agents. Bioorg. Med. Chem. 19 (2011) 2688–2695.

    Article  CAS  PubMed  Google Scholar 

  109. Kim, S., Min, S.Y., Lee, S.K., Cho, W.-J. Comparative molecular field analysis study of stilbene derivatives active against A549 lung carcinoma. Chem. Pharm. Bull. 51 (2003) 516–521.

    Article  CAS  PubMed  Google Scholar 

  110. Chiang, Y.K., Kuo, C.C., Wu, Y.S., Chen, C.T., Coumar, M.S., Wu, J.S., Hsieh, H.P., Chang, C.Y., Jseng, H.Y., Wu, M.H., Leou, J.S., Song, J.S., Chang, J.Y., Lyu, P.C., Chao, Y.S. and Wu, S.Y. Generation of ligandbased pharmacophore model and virtual screening for identification of tubulin inhibitors with potent anticancer activity. J. Med. Chem. 52 (2009) 4221–4233.

    Article  CAS  PubMed  Google Scholar 

  111. Tseng, C.Y., Mane, J.Y., Winter, P., Johnson, L., Huzil, T., Izbicka, E., Luduena, R.F. and Tuszynski, J.A. Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol. Cancer 30 (2010) 131–150.

    Article  CAS  Google Scholar 

  112. Tuszynski, J.A., Craddock, T.J., Mane, J.Y., Barakat, K., Tseng, C.Y., Gajewski, M., Winter, P., Alisaraie, L., Patterson, J., Carpenter, E., Wang, W., Deyholos, M.K., Li, L., Sun, X., Zhang, Y. and Wong, G.K. Modeling the yew tree tubulin and a comparison of its interaction with Paclitaxel to human tubulin. Pharm. Res. 29 (2012) 3007–3021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Mikstacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikstacka, R., Stefański, T. & Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell Mol Biol Lett 18, 368–397 (2013). https://doi.org/10.2478/s11658-013-0094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0094-z

Key words