Skip to main content
  • Research Article
  • Published:

Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line

Abstract

Dendrimers containing viologen (derivatives of 4,4′-bipyridyl) units in their structure have been demonstrated to exhibit antiviral activity against human immunodeficiency virus (HIV-1). It has also recently been revealed that novel dendrimers with both viologen units and phosphorus groups in their structure show different antimicrobial, cytotoxic and hemotoxic properties, and have the ability to influence the activity of cholinesterases and to inhibit α-synuclein fibrillation. Since the influence of viologen-phosphorus structures on basic cellular processes had not been investigated, we examined the impact of such macromolecules on the murine neuroblastoma cell line (N2a). We selected three water-soluble viologen-phosphorus (VPD) dendrimers, which differ in their core structure, number of viologen units and number and type of surface groups, and analyzed several aspects of the cellular response. These included cell viability, generation of reactive oxygen species (ROS), alterations in mitochondrial activity, morphological modifications, and the induction of apoptosis and necrosis. The MTT assay results suggest that all of the tested dendrimers are only slightly cytotoxic. Although some changes in ROS formation and mitochondrial function were detected, the three compounds did not induce apoptosis or necrosis. In light of these results, we can assume that the tested VPD are relatively safe for mouse neuroblastoma cells. Although more research on their safety is needed, VPD seem to be promising nanoparticles for further biomedical investigation.

Abbreviations

AO:

acridine orange

EB:

ethidium bromide

FSC:

forward scatter

H2DCFDA:

2,7-dichlorodihydrofluorescin diacetate

MTT:

3-[4,5-2-yl]-2-5-diphenyltetrazolium bromide

N2a:

murine neuroblastoma cell line

PAMAM:

polyamidoamine dendrimers

PEG:

polyethyleneglycols

PI:

propidium iodine

PPI:

polypropylenimine dendrimers

ROS:

reactive oxygen species

SSC:

side scatter

VPD:

viologen-phosphorus dendrimers

References

  1. Klajnert, B. and Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol. 48 (2001) 199–208.

    CAS  PubMed  Google Scholar 

  2. Svenson, S. and Tomalia, D.A. Dendrimers in biomedical applicationsreflections on the field. Adv. Drug Deliv. Rev. 57 (2005) 2106–2129.

    Article  CAS  PubMed  Google Scholar 

  3. Menjoge, A.R., Kannan, R.M. and Tomalia, D.A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug. Discov. Today 15 (2010) 171–185.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, B., Navath, R.S., Menjoge, A.R., Balakrishnan, B., Bellair, R., Dai, H., Romero, R., Kannan, S. and Kannan, R.M. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int. J. Pharm. 395 (2010) 298–308.

    Article  CAS  PubMed  Google Scholar 

  5. Luganini, A., Nicoletto, S.F., Pizzuto, L., Pirri, G., Giuliani, A., Landolfo, S. and Gribaudo, G. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 55 (2011) 3231–3239.

    Article  CAS  PubMed  Google Scholar 

  6. Janiszewska, J., Sowińska, M., Rajnisz, A., Solecka, J., Łacka, I., Milewski, S. and Urbańczyk-Lipkowska, Z. Novel dendrimeric lipopeptides with antifungal activity. Bioorgan. Med. Chem. Lett. 22 (2012) 1388–1393.

    Article  CAS  Google Scholar 

  7. Ottaviani, M.F., Mazzeo, R., Cangiotti, M., Fiorani, L., Majoral, J.-P., Caminade, A.-M., Pedziwiatr, E., Bryszewska, M. and Klajnert, B. Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. Biomacromolecules 11 (2010) 3014–3021.

    Article  CAS  Google Scholar 

  8. Milowska, K., Gabryelak, T., Bryszewska, M., Caminade, A.-M. and Majoral, J.-P. Phosphorus-containing dendrimers against α-synuclein fibril formation. Int. J. Biol. Macromol. 50 (2012) 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  9. Wasiak, T., Ionov, M., Nieznanski, K., Nieznanska, H., Klementieva, O., Granell, M., Cladera, J., Majoral, J.-P., Caminade, A.-M. and Klajnert, B. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol. Pharm. 9 (2012) 458–469.

    Article  CAS  PubMed  Google Scholar 

  10. Albertazzi, L., Gherardini, L., Brondi, M., Sulis Sato, S., Bifone, A., Pizzorusso, T., Ratto, G.M. and Bardi, G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol. Pharm. 10 (2013) 249–260.

    Article  CAS  PubMed  Google Scholar 

  11. Dai, H., Navath, R.S., Balakrishnan, B., Guru, B.R., Mishra, M.K., Romero, R., Kannan, R.M. and Kannan, S. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine 5 (2010) 317–1329.

    Article  Google Scholar 

  12. Kannan, S., Dai, H., Navath, R.S., Balakrishnan, B., Jyoti, A., Janisse, J., Romero, R. and Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci.Transl. Med. 4 (2012) 130ra46.

    Article  PubMed  Google Scholar 

  13. Iezzi, R., Guru, B.R., Glybina, I.V., Mishra, M.K., Kennedy, A. and Kannan, R.M. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33 (2012) 979–988.

    Article  CAS  PubMed  Google Scholar 

  14. Launay, N., Caminade, A. and Lahana, R. A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew. Chem. Int. Ed. Engl. 33 (1994) 1589–1592.

    Article  Google Scholar 

  15. Galliot, C. Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277 (1997) 1981–1984.

    Article  CAS  Google Scholar 

  16. Merino, S., Brauge, L., Caminade, A.M., Majoral, J.P., Taton, D. and Gnanou, Y. Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chemistry 7 (2001) 3095–3105.

    Article  CAS  PubMed  Google Scholar 

  17. Caminade, A.-M., Turrin, C.-O. and Majoral, J.-P. Biological properties of phosphorus dendrimers. New J. Chem. 34 (2010) 1512–1524.

    Article  CAS  Google Scholar 

  18. Babbs, C.F., Pham, J.A. and Coolbaugh, R.C. Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90 (1989) 1267–1270.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, C., Zhang, X., Jiang, Y., Li, G., Wang, H., Tang, X. and Wang, Q. Paraquat-induced convulsion and death: a report of five cases. Toxicol. Ind. Health (2012) DOI: 10.1177/0748233712442712.

    Google Scholar 

  20. Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: human exposure study supports years of animal studies. Environ. Health Perspect. 119 (2011) A259.

    Article  PubMed  Google Scholar 

  21. Freire, C. and Koifman, S. Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology 33 (2012) 947–971.

    Article  CAS  PubMed  Google Scholar 

  22. Gollamudi, S., Johri, A., Calingasan, N.Y., Yang, L., Elemento, O. and Beal, M.F. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE 7 (2012) e36191.

    Article  CAS  PubMed  Google Scholar 

  23. Fukushima, T., Tanaka, K., Lim, H. and Moriyama, M. Mechanism of cytotoxicity of paraquat.Environ. Health Prev. Med. 7 (2002) 89–94.

    Article  CAS  PubMed  Google Scholar 

  24. Bielefeld, E.C., Hu, B.H., Harris, K.C. and Henderson, D. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res. 207 (2005) 35–42.

    Article  CAS  PubMed  Google Scholar 

  25. Asaftei, S. and De Clercq, E. “Viologen” dendrimers as antiviral agents: the effect of charge number and distance. J. Med. Chem. 53 (2010) 3480–3488.

    Article  CAS  PubMed  Google Scholar 

  26. Ciepluch, K., Katir, N., Kadib, El, A., Felczak, A., Zawadzka, K., Weber, M., Klajnert, B., Lisowska, K., Caminade, A.-M., Bousmina, M., Bryszewska, M. and Majoral, J.P. Biological properties of new viologen-phosphorus dendrimers. Mol. Pharm. 9 (2012) 448–457.

    Article  CAS  PubMed  Google Scholar 

  27. Ciepluch, K., Weber, M., Katir, N., Caminade, A.-M., Kadib, El, A., Klajnert, B., Majoral, J.-P. and Bryszewska, M. Effect of viologenphosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int. J. Biol. Macromol. 54 (2013) 119–124.

    Article  CAS  PubMed  Google Scholar 

  28. Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol. Pharm. 10 (2013) 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  29. Milowska, K., Grochowina, J., Katir, N., Kadib, El, A., Majoral, J.-P., Bryszewska, M. and Gabryelak, T. Interaction between viologen-phosphorus dendrimers and α-synuclein. J. Lumin. 134 (2013) 132–137.

    Article  CAS  Google Scholar 

  30. Baker, J.R. Dendrimer-based nanoparticles for cancer therapy. Hematology Am. Soc. Hematol. Educ. Program (2009) 708–719.

    Google Scholar 

  31. Guo, R. and Shi, X. Dendrimers in cancer therapeutics and diagnosis. Curr. Drug Metab. 13 (2012) 1097–1109.

    Article  CAS  PubMed  Google Scholar 

  32. Bernas, T. and Dobrucki, J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47 (2002) 236–242.

    Article  CAS  PubMed  Google Scholar 

  33. Janaszewska, A., Ciolkowski, M., Wróbel, D., Petersen, J.F., Ficker, M., Christensen, J.B., Bryszewska, M. and Klajnert, B. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines. Nanomedicine (2013) DOI: 10.1016/j.nano.2013.01.010.

    Google Scholar 

  34. Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76.

    Article  CAS  PubMed  Google Scholar 

  35. Agnello, M., Morici, G., and Rinaldi, A.M. A method for measuring mitochondrial mass and activity. Cytotechnology 56 (2008) 145–149.

    Article  PubMed  Google Scholar 

  36. Salvioli, S., Ardizzoni, A., Franceschi, C. and Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411 (1997) 77–82.

    Article  CAS  PubMed  Google Scholar 

  37. Ribble, D., Goldstein, N.B., Norris, D.A. and Shellman, Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 5 (2005) DOI:10.1186/1472-6750-5-12.

  38. Michałowicz, J. and Sicińska, P. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro). Toxicol. Lett. 191 (2009) 246–252.

    Article  PubMed  Google Scholar 

  39. Patel, D., Henry, J. and Good, T. Attenuation of β-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim. Biophys. Acta 1760 (2006) 1802–1809.

    Article  CAS  PubMed  Google Scholar 

  40. Kuo, J.-H.S., Jan, M.-S. and Lin, Y.-L. Interactions between U-937 human macrophages and poly(propyleneimine) dendrimers. J. Control Release 120 (2007) 51–59.

    Article  CAS  PubMed  Google Scholar 

  41. Naha, P.C., Davoren, M., Lyng, F.M. and Byrne, H.J. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol. Appl. Pharmacol. 246 (2010) 91–99.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, W., Xiong, W., Wan, J., Sun, X., Xu, H. and Yang, X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 20 (2009) 105103.

    Article  PubMed  Google Scholar 

  43. Mukherjee, S.P., Lyng, F.M., Garcia, A., Davoren, M. and Byrne, H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol. 248 (2010) 259–268.

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee, S.P. and Byrne, H.J. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine 9 (2012) 202–211.

    PubMed  Google Scholar 

  45. Lee, J.-H., Cha, K.E., Kim, M.S., Hong, H.W., Chung, D.J., Ryu, G. and Myung, H. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol. Lett. 190 (2009) 202–207.

    Article  CAS  PubMed  Google Scholar 

  46. Hong, S., Leroueil, P.R., Janus, E.K., Peters, J.L., Kober, M.-M., Islam, M.T., Orr, B.G., Baker, J.R. and Banaszak Holl, M.M. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membranepermeability. Bioconjugate Chem. 17 (2006) 728–734.

    Article  CAS  Google Scholar 

  47. Leroueil, P.R., Hong, S., Mecke, A., Baker, J.R., Orr, B.G. and Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 40 (2007) 335–342.

    Article  CAS  PubMed  Google Scholar 

  48. Leroueil, P.R., Berry, S.A., Duthie, K., Han, G., Rotello, V.M., McNerny, D.Q., Baker, J.R., Orr, B.G. and Holl, M.M.B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano. Lett. 8 (2008) 420–424.

    Article  CAS  PubMed  Google Scholar 

  49. Ionov, M., Wrobel, D., Gardikis, K., Hatziantoniou, S., Demetzos, C., Majoral, J-P., Klajnert, B. and Bryszewska, M. Effect of phosphorus dendrimers on DMPC lipid membranes. Chem. Phys. Lipids 165 (2012) 408–413.

    Article  CAS  PubMed  Google Scholar 

  50. Kitchens, K.M., Foraker, A.B., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm. Res. 24 (2007) 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  51. Kitchens, K.M., Kolhatkar, R.B., Swaan, P.W. and Ghandehari, H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm. 5 (2008) 364–369.

    Article  CAS  PubMed  Google Scholar 

  52. Albertazzi, L., Serresi, M., Albanese, A. and Beltram, F. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm. 7 (2010) 680–688.

    Article  CAS  PubMed  Google Scholar 

  53. Albertazzi, L., Fernandez-Villamarin, M., Riguera, R. and Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjugate Chem. 23 (2012) 1059–1068.

    Article  CAS  Google Scholar 

  54. Perumal, O.P., Inapagolla, R., Kannan, S. and Kannan, R.M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29 (2008) 3469–3476.

    Article  CAS  PubMed  Google Scholar 

  55. Healy, E., Dempsey, M., Lally, C. and Ryan, M.P. Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 54 (1998) 1955–1966.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Lazniewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazniewska, J., Milowska, K., Katir, N. et al. Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cell Mol Biol Lett 18, 459–478 (2013). https://doi.org/10.2478/s11658-013-0100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0100-5

Key words