Skip to main content

Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications

Abstract

The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

Abbreviations

ADSCs:

adipose-derived stem cells or adipose tissue-derived stromal cells

ASCs:

adult stem cells

BAT:

brown adipose tissue

BMD:

Becker muscular dystrophy

BMSCs:

bone marrow stem cells

CAL:

cell-assisted lipotransfer

CCL5:

chemokine C-C-motif

CD:

cluster of differentiation

CFU-F:

fibroblast colony-forming unit

DMD:

Duchenne muscular dystrophy

DMSO:

di-methyl sulfoxide

ESC:

embryonic stem cells

FSC:

fetal stem cells

HGF:

hepatocyte growth factor

HSC:

hematopoietic stem cells

Isl 1:

islet 1

iPSs:

induced pluripotent stem cells

Kyn:

kynurenine

LDLs:

low-density lipoproteins

LIF:

leukemia inhibitory factor

MHC:

major histocompatibility complex

MSC:

mesenchymal stem cells

NGN 3:

neurogenin 3

Pax 4:

paired box gene

PDX 1:

pancreatic duodenal homeobox

PGE2 :

prostaglandin E2

SDF-1:

stromal cell-derived factor

SVF:

stromal-vascular cell fraction

TGFβ:

transforming growth factor-β

TGFβ1:

transforming growth factor-beta 1

VEGF:

vascular endothelial growth factor

WAT:

white adipose tissue

References

  1. 1.

    Bajek, A., Olkowska, J. and Drewa, T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration. Postepy Hig. Med. Dosw. 65 (2011) 124–132.

    Article  Google Scholar 

  2. 2.

    Banaś, A. Stem cells — perspectives and dangers. Prz. Med. Uniw. Rzesz. 8 (2010) 117–127.

    Google Scholar 

  3. 3.

    Skalska, U. and Kontny, E. Regenerative and immunomodulatory properties of adipose-derived mesenchymal stem cells. Post. Biol. Kom. 38 (2011) 363–378.

    CAS  Google Scholar 

  4. 4.

    Lindroos, B., Suuronen, R. and Miettinen, S. The Potential of adipose stem cells in regenerative medicine. Stem Cell Rev. 7 (2011) 269–291.

    PubMed  Article  Google Scholar 

  5. 5.

    Jezierska-Woźniak, K., Nosarzewska, D., Tutas, A., Mikołajczyk, A., Okliński, M. and Jurkowski, M.K. Use of adipose tissue as a source of mesenchymal stem cells. Postepy Hig. Med. Dosw. 64 (2010) 326–332.

    Google Scholar 

  6. 6.

    Zuk, P.A. The Adipose-derived stem cell: looking back and looking ahead. Mol. Biol. Cell 21 (2010) 1783–1787.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Sun, L., Akiyama, K., Zhang, H., Yamaza, T., Hou, Y., Zhao, S., Xu, T., Le, A. and Shi, S. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27 (2009) 1421–1432.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Cawthorn, W.P., Scheller, E.L. and MacDougald, O.A. Adipose tissue stem cells: the great WAT hope. Trends Endocrinol. Metab. 23 (2012) 270–277.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Fraser, J.K., Zhu, M., Wulur, I. and Alfonso, Z. Adipose-derived stem cells. Methods Mol. Biol. 449 (2008) 59–67.

    PubMed  Google Scholar 

  11. 11.

    Banaś, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228.

    PubMed  Article  Google Scholar 

  12. 12.

    Baer, P.C. and Geiger, H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. Article ID 812693, (2012). DOI: 10.1155/2012/812693.

    Google Scholar 

  13. 13.

    Im, G.-I., Shin, Y.-W. and Lee, K.-B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13 (2005) 845–853.

    PubMed  Article  Google Scholar 

  14. 14.

    Schaffler, A. and Buchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 25 (2007) 818–827.

    PubMed  Article  Google Scholar 

  15. 15.

    Witkowska-Zimny, M. and Walenko, K. Stem cells from adipose tissue. Cell. Mol. Biol. Lett. 16 (2011) 236–257.

    PubMed  Article  Google Scholar 

  16. 16.

    Olkowska-Truchanowicz, J. Isolation and characterization of adipose tissuederived stem cells. Post. Biol. Kom. 35 (2008) 517–526.

    Google Scholar 

  17. 17.

    Romanov, Y.A., Darevskaya, A.N., Merzlikina, N.V. and Buravkova, L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization and differentiation potentialities. Bull. Exp. Biol. Med. 3 (2005) 138–143.

    Article  Google Scholar 

  18. 18.

    Wu, C.-H., Lee, F.-K., Kumar, S.S., Ling, Q.-D., Chang, Y., Chang, Y., Wang, H.-Ch., Chen, H., Chen, D.-Ch., Hsu, S.-T. and Higuchi, A. The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials 33 (2012) 8228–8239.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Yang, X., Gong, P., Lin, Y., Zhang, L., Li, X., Yuan, Q., Tan, Z., Wang, Y., Man, Y. and Tang, H. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Arch. Med. Sci. 6 (2010) 152–159.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Olkowska-Truchanowicz, J. Differentiation of adipose tissue-derived stem cells- novel possibilities for tissue engineering and cell-based therapy. Post. Biol. Kom. 36 (2009) 217–231.

    Google Scholar 

  21. 21.

    Palpant, N.J. and Metzger, J.M. Aesthetic cardiology: adipose-derived stem cells for myocardial repair. Curr. Stem Cell Res. Ther. 5 (2010) 145–152.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Mazo, M., Gavira, J.J., Pelacho, B. and Prosper, F. Adipose-derived stem cells for myocardial infarction. J. Cardiovasc. Transl. Res. 4 (2011) 145–153.

    PubMed  Article  Google Scholar 

  23. 23.

    Yamada, Y., Wang, X.-D., Yokayama, S., Fukuda, N. and Takakura, N. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem. Biophys. Res. Commun. 342 (2006) 662–670.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Villiers, J.A., Houreld, N. and Abrahamse, H. Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cell Rev. 5 (2009) 256–265.

    PubMed  Article  Google Scholar 

  25. 25.

    Wang, B., Han, J., Gao, Y., Xiao, Z., Chen, B. and Wang, X. The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OECs. Neurosci. Lett. 421 (2007) 191–196.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bae, J., Carter, J.E. and Jin, H.K. Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res. 340 (2010) 357–369.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Vieira, N.M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V.A., Strauss, B.E., Vainzof, M. and Zatz, M. Human multipotent adiposederived stem cells restore dystrophin expression of Duchenne skeletalmuscle cells in vitro. Biol. Cell 100 (2008) 231–241.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Gimble, J.M., Katz, A.J. and Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100 (2007) 1249–1260.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y. and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs. 12 (2009) 123–130.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Silva, A.C., Percegona, L.S., Franca, A.L., dos Santos, T.M., Perini, C.C., Gonzalez, P., Rebelatto, C.L.K., Camara, N.O.S. and Aita, C.A.M. Expression of pancreatic endocrine markers by mesenchymal stem cells from human adipose tissue. Transplant. Proc. 44 (2012) 2495–2496.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Sterodimas, A., de Faria, J., Nicaretta, B. and Pitanguy, I. Tissue engineering with adipose-derived stem cells (ADSCs): Current and future applications. J. Plast. Reconstr. Aesthet. Surg. 63 (2010) 1886–1892.

    PubMed  Article  Google Scholar 

  33. 33.

    Muehlberg, F.L., Song, Y.-H., Krohn, A., Pinilla, S.P., Droll, L.H., Leng, X., Seidensticker, M., Ricke, J., Altman, A.M., Devarajan, E., Liu, W., Arlinghaus, R.B. and Alt, E.U. Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30 (2009) 589–597.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Cousin, B., Ravet, E., Poglio, S., de Toni, F., Bertuzzi, M., Lulka, H., Touil, I., André, M., Grolleau, J.L., Péron, J.M., Chavoin, J.P., Bourin, P., Pénicaud, L., Casteilla, L., Buscail, L., and Cordelier, P. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. Plos One 7 (2009) e6278. DOI:10.1371/journal.pone.0006278.

    Article  Google Scholar 

  35. 35.

    Kucerova, L., Altanerova, V., Matuskova, M., Tyciakova, S., and Altaner, C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 67 (2007) 6304–6313.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janusz Kocki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J. et al. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett 18, 479–493 (2013). https://doi.org/10.2478/s11658-013-0101-4

Download citation

Key words

  • Adipocyte
  • Mesenchymal stem cells
  • Regenerative medicine
  • Adipose tissue
  • Stem cell therapy
  • Adipose-derived stem cells
  • Stromal cells
  • Flow cytometry