Skip to main content
  • Short communication
  • Published:

The role of glycogen synthase kinase-3β in glioma cell apoptosis induced by remifentanil

Abstract

The aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.

Abbreviations

FBS:

fetal bovine serum

GSK-3β:

glycogen synthase kinase-3β

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMDA:

N-methyl-D-aspartate

PBS:

phosphate buffered saline

PI:

propidium iodide

TDZD-8:

4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione

References

  1. Scott, C.B., Scarantino, C., Urtasun, R., Movsas, B., Jones, C.U., Simpson, J.R., Fischbach, A.J. and Curran, W.J., Jr. Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int. J. Radiat. Oncol. Biol. Phys. 40 (1998) 51–55.

    Article  CAS  PubMed  Google Scholar 

  2. Bogler, O. and Weller, M. Apoptosis in gliomas, and its role in their current and future treatment. Front. Biosci. 7 (2002) 339–353.

    Article  Google Scholar 

  3. Hahnenkamp, K., Nollet, J., Van Aken, H.K., Buerkle, H., Halene, T., Schauerte, S., Hahnenkamp, A., Hollmann, M.W., Strumper, D., Durieux, M.E. and Hoenemann, C.W. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes. Anesthesiology 100 (2004) 1531–1537.

    Article  CAS  PubMed  Google Scholar 

  4. Guntz, E., Dumont, H., Roussel, C., Gall, D., Dufrasne, F., Cuvelier, L., Blum, D., Schiffmann, S.N. and Sosnowski, M. Effects of remifentanil on N-methyl-D-aspartate receptor: an electrophysiologic study in rat spinal cord. Anesthesiology 102 (2005) 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, M. and Joo, D.T. Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology 109 (2008) 308–317.

    Article  CAS  PubMed  Google Scholar 

  6. Joly, V., Richebe, P., Guignard, B., Fletcher, D., Maurette, P., Sessler, D.I. and Chauvin, M. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology 103 (2005) 147–155.

    Article  CAS  PubMed  Google Scholar 

  7. Luo, H.R., Hattori, H., Hossain, M.A., Hester, L., Huang, Y., Lee-Kwon, W., Donowitz, M., Nagata, E. and Snyder, S.H. Akt as a mediator of cell death. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 11712–11717.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. De, Sarno. P., Bijur, G.N., Zmijewska, A.A., Li, X. and Jope, R.S. In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol. Aging 27 (2006) 413–422.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Svenningsson, P., Tzavara, E.T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D.L., Fienberg, A.A., Nomikos, G.G. and Greengard, P. Diverse psychotomimetics act through a common signaling pathway. Science 302 (2003) 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  10. Doble, B.W. and Woodgett, J.R. GSK-3: tricks of the trade for a multitasking kinase. J. Cell. Sci. 116 (2003) 1175–1186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cohen, P. and Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 3 (2004) 479–487.

    Article  CAS  PubMed  Google Scholar 

  12. Watcharasit, P., Bijur, G.N., Song, L., Zhu, J., Chen, X. and Jope, R.S. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J. Biol. Chem. 278 (2003) 48872–48879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hetman, M., Cavanaugh, J.E., Kimelman, D. and Xia, Z. Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20 (2000) 2567–2574.

    CAS  PubMed  Google Scholar 

  14. Bijur, G.N., De, Sarno. P. and Jope, R.S. Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J. Biol. Chem. 275 (2000) 7583–7590.

    Article  CAS  PubMed  Google Scholar 

  15. Hemmings, B.A., Yellowlees, D., Kernohan, J.C. and Cohen, P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FA) of the (Mg-ATP) dependent protein phosphatase. Eur. J. Biochem. 119 (1981) 443–451.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, S.M., Cheung, C.W., Chang, C.S., Tang, C.H., Liu, J.F., Lin, Y.H., Chen, J.H., Ko, S.H., Wong, K.L. and Lu, D.Y. Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J. Cell. Biochem. 112 (2011) 643–652.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Z., Smith, K.S., Murphy, M., Piloto, O., Somervaille, T.C. and Cleary, M.L. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455 (2008) 1205–1209.

    Article  CAS  PubMed  Google Scholar 

  18. Foltz, D.R., Santiago, M.C., Berechid, B.E. and Nye, J.S. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr. Biol. 12 (2002) 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  19. Singler, B., Troster, A., Manering, N., Schuttler, J. and Koppert, W. Modulation of remifentanil-induced postinfusion hyperalgesia by propofol. Anesth. Analg. 104 (2007) 1397–1403.

    Article  CAS  PubMed  Google Scholar 

  20. Benda, P., Lightbody, J., Sato, G., Levine, L. and Sweet, W. Differentiated rat glial cell strain in tissue culture. Science 161 (1968) 370–371.

    Article  CAS  PubMed  Google Scholar 

  21. Auer, R.N., Del Maestro, R.F. and Anderson, R. A simple and reproducible experimental in vivo glioma model. Can. J. Neurol. Sci. 8 (1981) 325–331.

    CAS  PubMed  Google Scholar 

  22. Denizot, F. and Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89 (1986) 271–277.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez, A., Alonso, M., Castro, A., Perez, C. and Moreno, F.J. First non- ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 45 (2002) 1292–1299.

    Article  CAS  PubMed  Google Scholar 

  24. Hui, W., Litherland, G.J., Jefferson, M., Barter, M.J., Elias M.S., Cawston, T.E., Rowan, A.D. and Young, D.A. Lithium protects cartilage from cytokinemediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology (Oxford) 49 (2010) 2043–2053.

    Article  CAS  Google Scholar 

  25. Shiu, L.Y., Liang, C.H., Huang, Y.S., Sheu, H.M. and Kuo, K.W. Downregulation of HER2/neu receptor by solamargine enhances anticancer drug-mediated cytotoxicity in breast cancer cells with high-expressing HER2/neu. Cell. Biol. Toxicol. 24 (2008) 1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70.

    Article  CAS  PubMed  Google Scholar 

  27. Mao, J., Price, D.D., Lu, J. and Mayer, D.J. Antinociceptive tolerance to the mu-opioid agonist DAMGO is dose-dependently reduced by MK-801 in rats. Neurosci. Lett. 250 (1998) 193–196.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, L. and Huang, L.Y. Sustained potentiation of NMDA receptormediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7 (1991) 319–326.

    Article  PubMed  Google Scholar 

  29. Ma, T., Zhao, Y., Kwak, Y.D., Yang, Z., Thompson, R., Luo, Z., Xu, H. and Liao, F.F. Statin’s excitoprotection is mediated by sAPP and the subsequent attenuation of calpain-induced truncation events, likely via rho-ROCK signaling. J. Neurosci. 29 (2009) 11226–11236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Barth, A.I., Nathke, I.S. and Nelson, W.J. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell. Biol. 9 (1997) 683–690.

    Article  CAS  PubMed  Google Scholar 

  31. Grimes, C.A. and Jope, R.S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65 (2001) 391–426.

    Article  CAS  PubMed  Google Scholar 

  32. Pap, M. and Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273 (1998) 19929–19932.

    Article  CAS  PubMed  Google Scholar 

  33. Crowder, R.J. and Freeman, R.S. Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J. Biol. Chem. 275 (2000) 34266–34271.

    Article  CAS  PubMed  Google Scholar 

  34. Korur, S., Huber, R.M., Sivasankaran, B., Petrich, M., Morin, P, Jr., Hemmings, B.A., Merlo, A. and Lino, M.M. GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4 (2009) 7443.

    Article  Google Scholar 

  35. Tan, J., Zhuang, L., Leong, H.S., Iyer, N.G., Liu, E.T. and Yu, Q. Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 65 (2005) 9012–9020.

    Article  CAS  PubMed  Google Scholar 

  36. Linseman, D.A., Butts, B.D., Precht, T.A., Phelps, R.A., Le, S.S., Laessig, T.A., Bouchard, R.J., Florez-McClure, M.L. and Heidenreich, K.A. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 24 (2004) 9993–10002.

    Article  CAS  PubMed  Google Scholar 

  37. Perez, M., Rojo, A.I., Wandosell, F., Diaz-Nido, J. and Avila, J. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochem. J. 372 (2003) 129–136.

    Article  CAS  PubMed  Google Scholar 

  38. Bajic, V.P., Su, B., Lee, H.G., Kudo, W., Siedlak, S.L., Zivkovic, L., Spremo-Potparevic, B., Djelic, N., Milicevic, Z., Singh, A.K., Fahmy, L.M., Wang, X., Smith, M.A. and Zhu, X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell. Mol. Biol. Lett. 16 (2011) 359–372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cali, T., Ottolini, D. and Brini, M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 52 (2012) 73–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vianna, P.T., Castiglia, Y.M., Braz, J.R., Viero, R.M., Beier, S., Vianna Filho, P.T., Vitoria, A., Reinoldes Bizarria Guilherme, G., de Assis Golim, M. and Deffune, E. Remifentanil, isoflurane, and preconditioning attenuate renal ischemia/reperfusion injury in rats. Transplant Proc. 41 (2009) 4080–4082.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, L.Q., Tao, K.M., Liu, Y.T., Cheung, C.W., Irwin, M.G., Wong, G.T., Lv, H., Song, J.G., Wu, F.X. and Yu, W.F. Remifentanil preconditioning reduces hepatic ischemia-reperfusion injury in rats via inducible nitric oxide synthase expression. Anesthesiology 114 (2011) 1036–1047.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, H.S., Cho, J.E., Hong, S.W., Kim, S.O., Shim, J.K. and Kwak, Y.L. Remifentanil protects myocardium through activation of anti-apoptotic pathways of survival in ischemia-reperfused rat heart. Physiol. Res. 59 (2010) 347–356.

    CAS  PubMed  Google Scholar 

  43. Park, S.W., Yi, J.W., Kim, Y.M., Kang, J.M., Kim, D.O., Shin, M.S., Kim, C.J., Lee, D.I., Kim, D.H. and Lee, B.J. Remifentanil alleviates transient cerebral ischemia-induced memory impairment through suppression of apoptotic neuronal cell death in gerbils. Korean J. Anesthesiol. 61 (2011) 63–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Xu, P., Li, Z. et al. The role of glycogen synthase kinase-3β in glioma cell apoptosis induced by remifentanil. Cell Mol Biol Lett 18, 494–506 (2013). https://doi.org/10.2478/s11658-013-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0102-3

Key words