Skip to main content

The expression of the eotaxins IL-6 and CXCL8 in human epithelial cells from various levels of the respiratory tract


Airway epithelium acts as multifunctional site of response in the respiratory tract. Epithelial activity plays an important part in the pathophysiology of obstructive lung disease. In this study, we compare normal human epithelial cells from various levels of the respiratory tract in terms of their reactivity to pro-allergic and pro-inflammatory stimulation. Normal human nasal, bronchial and small airway epithelial cells were stimulated with IL-4 and IL-13. The expressions of the eotaxins IL-6 and CXCL8 were evaluated at the mRNA and protein levels. The effects of pre-treatment with IFN-γ on the cell reactivity were measured, and the responses to TNF-α, LPS and IFN-γ were evaluated. All of the studied primary cells expressed CCL26, IL-6 and IL-8 after IL-4 or IL-13 stimulation. IFN-γ pre-treatment resulted in decreased CCL26 and increased IL-6 expression in the nasal and small airway cells, but this effect was not observed in the bronchial cells. IL-6 and CXCL8 were produced in varying degrees by all of the epithelial primary cells in cultures stimulated with TNF-α, LPS or IFN-γ. We showed that epithelial cells from the various levels of the respiratory tract act in a united way, responding in a similar manner to stimulation with IL-4 and IL-13, showing similar reactivity to TNF-α and LPS, and giving an almost unified response to IFN-γ pre-stimulation.



American Type Culture Collection


bronchial epithelial cell growth medium


chronic obstructive pulmonary disease


interferon γ




transforming growth factor beta


tumor necrosis factor alpha


  1. 1.

    Lloyd, C.M. and Saglani, S. Asthma and allergy: the emerging epithelium. Nat. Med. 16 (2010) 273–274.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. 2.

    Knight, D.A. and Holgate, S.T. The airway epithelium: structural and functional properties in health and disease. Respirology 8 (2003) 432–446.

    PubMed  Article  Google Scholar 

  3. 3.

    Liu, Y-J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med. 203 (2006) 269–273.

    PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Proud, D. and Leigh, R. Epithelial cells and airway diseases. Immunol. Rev.242 (2011) 186–204.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Cao, J., Ren, G., Gong, Y., Dong, S., Yin, Y. and Zhang, L. Bronchial epithelial cells release IL-6, CXCL1 and IL-8 upon mast cell interaction. Cytokine 56 (2011) 823–831.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Danila, E., Jurgauskiene, L., Norkuniene, J. and Malickaite, R. BAL fluid cells in newly diagnosed pulmonary sarcoidosis with different clinical activity. Ups. J. Med. Sci. 114 (2009) 26–31.

    PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Siva, R., Green, R.H., Brightling, C.E., Shelley, M., Hargadon, B., McKenna, S., Monteiro, W., Berry, M., Parker, D., Wardlaw, A.J. and Pavord, I.D. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur. Respir. J. 29 (2007) 906–913.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Brightling, C.E., Symon, F.A., Birring, S.S., Bradding, P., Pavord, I.D. and Wardlaw, A.J. TH2 cytokine expression in bronchoalveolar lavage fluid T lymphocytes and bronchial submucosa is a feature of asthma and eosinophilic bronchitis. J. Allergy Clin. Immunol. 110 (2002) 899–905.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Gordon, S.B. and Read, R.C. Macrophage defences against respiratory tract infections. Br. Med. Bull. 61 (2002) 45–61.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Douwes, J., Gibson, P., Pekkanen, J. and Pearce, N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57 (2002) 643–648.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Van Wetering, S., Zuyderduyn, S., Ninaber, D.K., van Sterkenburg, M.A.J.A., Rabe, K.F. and Hiemstra, S. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol. Immunol. 44 (2007) 803–811.

    PubMed  Article  Google Scholar 

  12. 12.

    Tomkinson, A., Duez, C., Cieslewicz, G., Pratt, J.C., Joetham, A., Shanafelt, M.C., Gundel, R. and Gelfand, E.W. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol. 166 (2001) 5792–5800.

    CAS  PubMed  Google Scholar 

  13. 13.

    Takizawa, H., Ohtoshi, T., Yamashita, N., Oka, T. and Ito, K. Interleukin 6-receptor expression on human bronchial epithelial cells: regulation by IL-1 and IL-6. Am. J. Physiol. 270 (1996) 346–352.

    Google Scholar 

  14. 14.

    Cao, J., Wong, C.K., Yin, Y. and Lam, C.W.K. Activation of human bronchial epithelial cells by inflammatory cytokines IL-27 and TNF-alpha: implications for immunopathophysiology of airway inflammation. J. Cell. Physiol. 223 (2010) 788–797.

    CAS  PubMed  Google Scholar 

  15. 15.

    Ge, Q., Moir, L.M., Black, J.L., Oliver, B.G. and Burgess, J.K. TGFβ1 induces IL-6 and inhibits IL-8 release in human bronchial epithelial cells: the role of Smad2/3. J. Cell. Physiol. 225 (2010) 846–854.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Xie, X.H., Law, H.K.W., Wang, L.J., Li, X., Yang, X.Q. and Liu, E.M. Lipopolysaccharide induces IL-6 production in respiratory syncytial virusinfected airway epithelial cells through the toll-like receptor 4 signaling pathway. Pediatr. Res. 65 (2009) 156–162.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Xia, C., Shichang, Z., Tao, L., Yong, L. and Yingjie, W. Maintenance of rat hepatocytes under inflammation by coculture with human orbital fat-derived stem cells. Cell. Mol. Biol. Lett. 17 (2012) 182–195. DOI: 10.2478/s11658-012-0004-9.

    Article  Google Scholar 

  18. 18.

    Denning, G.M., Wollenweber, L.A., Railsback, M.A., Cox, C.D., Stoll, L.L. and Britigan, B.E. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect. Immun. 66 (1998) 5777–5784.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Nakanaga, T., Nadel, J.A., Ueki, I.F., Koff, J.L. and Shao, M.X.G. Regulation of interleukin-8 via an airway epithelial signaling cascade. Am. J. Physiol. Lung Cell. Mol. Physiol. 292 (2007) 1289–1296.

    Article  Google Scholar 

  20. 20.

    Li, J., Kartha, S., Iasvovskaia, S., Tan, A., Bhat, R.K., Manaligod, J.M., Page, K., Brasier, A.R. and Hershenson, M.B. Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am. J. Physiol. Lung Cell. Mol. Physiol. 283 (2002) 690–699.

    Google Scholar 

  21. 21.

    Compalati, E., Ridolo, E., Passalacqua, G., Braido, F., Villa, E. and Canonica, G.W. The link between allergic rhinitis and asthma: the united airways disease. Expert Rev. Clin. Immunol. 6 (2010) 413–423.

    PubMed  Article  Google Scholar 

  22. 22.

    Togias, A. Rhinitis and asthma: evidence for respiratory system integration. J. Allergy Clin. Immunol. 111 (2003) 1171–1183.

    PubMed  Article  Google Scholar 

  23. 23.

    Feng, C.H., Miller, M.D. and Simon, R.A. The united allergic airway: connections between allergic rhinitis, asthma, and chronic sinusitis. Am. J. Rhinol. Allergy 26 (2012) 187–190.

    PubMed  Article  Google Scholar 

  24. 24.

    Devalia, J.L., Sapsford, R.J., Wells, C.W., Richman, P. and Davies, R.J. Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir. Med. 84 (1990) 303–312.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    McDougall, C.M., Blaylock, M.G., Douglas, J.G., Brooker, R.J., Helms, P.J. and Walsh, G.M. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am. J. Respir. Cell. Mol. Biol. 39 (2008) 560–568.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Comer, D.M., Elborn, J.S. and Ennis, M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS ONE 7 (2012) e32924.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Thavagnanam, S., Parker, J.C., McBrien, M.E., Skibinski, G., Heaney, L.G. and Shields, M.D. Effects of IL-13 on mucociliary differentiation of pediatric asthmatic bronchial epithelial cells. Pediatr. Res. 69 (2011) 95–100.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001) 402–408.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Pringle, E.J., Richardson, H.B., Miller, D., Cornish, D.S., Devereux, G.S., Walsh, G.M. and Turner, S.W. Nasal and bronchial airway epithelial cell mediator release in children. Pediatr. Pulmonol. 47 (2012) 1215–1225.

    PubMed  Article  Google Scholar 

  30. 30.

    Kobayashi, I., Yamamoto, S., Nishi, N., Tsuji, K., Imayoshi, M., Inada, S., Ichiamaru, T. and Hamasaki, Y. Regulatory mechanisms of Th2 cytokineinduced eotaxin-3 production in bronchial epithelial cells: possible role of interleukin 4 receptor and nuclear factor-kappaB. Ann. Allergy Asthma Immunol. 93 (2004) 390–397.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Komiya, A., Nagase, H., Yamada, H., Sekiya, T., Yamaguchi, M., Sano, Y., Hanai, N., Furuya, A., Ohta, K., Matsushima, K., Yoshie, O., Yamamoto, K. and Hirai, K. Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Cell. Immunol. 225 (2003) 91–100.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Faul, J.L., Tormey, V.J., Leonard, C., Burke, C.M., Farmer, J., Horne, S.J. and Poulter, L.W. Lung immunopathology in cases of sudden asthma death. Eur. Respir. J. 10 (1997) 301–307.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Carroll, N., Cooke, C. and James, A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur. Respir. J.10 (1997) 292–300.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Lopez-Souza, N., Favoreto, S., Wong, H., Ward, T., Yagi, S., Schnurr, D., Finkbeiner, W.E., Dolganov, G.M., Widdicombe, J.H., Boushey, H.A. and Avila, P.C. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J. Allergy Clin. Immunol. 123 (2009) 1384–1390.e2.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Becker, S., Koren. H.S. and Henke, D.C. Interleukin-8 expression in normal nasal epithelium and its modulation by infection with respiratory syncytial virus and cytokines tumor necrosis factor, interleukin-1, and interleukin-6. Am. J. Respir. Cell Mol. Biol. 8 (1993) 20–27.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Adler, K.B., Fischer, B.M., Wright, D.T., Cohn, L.A. and Becker, S. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Ann. N. Y. Acad. Sci. 725 (1994) 128–145.

    CAS  PubMed  Google Scholar 

  37. 37.

    Villarete, L.H. and Remick, D.G. Transcriptional and post-transcriptional regulation of interleukin-8. Am. J. Pathol. 149 (1996) 1685–1693.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ma, P., Cui, X., Wang, S., Zhang, J., Nishanian, E.V., Wang, W., Wesley, R.A. and Danner, R.L. Nitric oxide post-transcriptionally up-regulates LPSinduced IL-8 expression through p38 MAPK activation. J. Leukoc. Biol. 76 (2004) 278–287.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Yu, Y. and Chadee, K. Prostaglandin E2 stimulates IL-8 gene expression in human colonic epithelial cells by a posttranscriptional mechanism. J. Immunol. 161 (1998) 3746–3752.

    CAS  PubMed  Google Scholar 

  40. 40.

    Yu, Y., Zeng, H., Lyons, S., Carlson, A., Merlin, D., Neish, A.S. and Gewirtz, A.T. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am. J. Physiol. Gastrointest. Liver. Physiol. 285 (2003) 282–290.

    Google Scholar 

  41. 41.

    Blume, C., Swindle, E.J., Dennison, P., Jayasekera, N.P., Dudley, S., Monk, P., Behrendt, H., Schmidt-Weber, C.B., Holgate, S.T., Howarth, P.H., Traidl-Hoffmann, C. and Davies, D.E. Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur. Respir. J. 42 (2013) 87–97. DOI: 10.1183/09031936.00075612.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Van Wissen, M., Snoek, M., Smids, B., Jansen, H.M. and Lutter, R. IFN-gamma amplifies IL-6 and IL-8 responses by airway epithelial-like cells via indoleamine 2,3-dioxygenase. J. Immunol. 169 (2002) 7039–7044.

    PubMed  Google Scholar 

  43. 43.

    Heller, N.M., Matsukura, S., Georas, S.N., Boothby, M.R., Rothman, P.B., Stellato, C. and Schleimer, R.P. Interferon-gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 31 (2004) 573–582.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Kraft, M., Djukanovic, R.M., Wilson, S.M., Holgate, S.T. and Martin, R.J. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med.154 (1996) 1505–1510.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Magdalena Paplińska-Goryca.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paplińska-Goryca, M., Nejman-Gryz, P., Chazan, R. et al. The expression of the eotaxins IL-6 and CXCL8 in human epithelial cells from various levels of the respiratory tract. Cell Mol Biol Lett 18, 612–630 (2013).

Download citation

Key words

  • CXCL8
  • Eotaxin-3
  • Inflammation
  • Interferon gamma
  • Interleukin 6
  • Respiratory epithelium
  • United airways