Skip to main content

Decreasing the thresholds for electroporation by sensitizing cells with local cationic anesthetics and substances that decrease the surface negative electric charge


The recently described method of cell electroporation by flow of cell suspension through localized direct current electric fields (dcEFs) was applied to identify non-toxic substances that could sensitize cells to external electric fields. We found that local cationic anesthetics such as procaine, lidocaine and tetracaine greatly facilitated the electroporation of AT2 rat prostate carcinoma cells and human skin fibroblasts (HSF). This manifested as a 50% reduction in the strength of the electric field required to induce cell death by irreversible electroporation or to introduce fluorescent dyes such as calcein, carboxyfluorescein or Lucifer yellow into the cells. A similar decrease in the electric field thresholds for irreversible and reversible cell electroporation was observed when the cells were exposed to the electric field in the presence of the non-toxic cationic dyes 9-aminoacridine (9-AAA) or toluidine blue. Identifying non-toxic, reversibly acting cell sensitizers may facilitate cancer tissue ablation and help introduce therapeutic or diagnostic substances into the cells and tissues.





direct current electric field

EthBr2 :

ethidium bromide


fetal bovine serum


fluorescein diacetate


human skin fibroblasts


irreversible electroporation


phosphate buffered saline with or without calcium and magnesium ions


reversible electroporation


  1. Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E. Guide to Electroporation and Electrofusion, Academic Press Inc., San Diego, 1992.

    Google Scholar 

  2. Li, S. (Ed.). Electroporation Protocols. Preclinical, and Clinical Gene Medicine, Humana Press, Totowa, New Jersey, 2008.

    Google Scholar 

  3. Neumann, E., Schaeffer-Ridder, M., Wang, Y. and Hofschneider, P.H. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1 (1982) 841–845.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Gissel, H., Lee, R.C. and Gehl, J. Electroporation and cellular physiology. In: Clinical Aspects of Electroporation (Kee, S.T., Gehl, J. and Lee, E.W., Eds.), Springer, New York, 2011, 9–17.

    Chapter  Google Scholar 

  5. Miller, L., Leor, J. and Rubinsky, B. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4 (2005) 699–705.

    PubMed  Google Scholar 

  6. Rubinsky, B. (Ed.). Irreversible Electroporation. Springer-Verlag, Berlin, Heidelberg, 2010.

    Google Scholar 

  7. Rubinsky, J., Onik, G., Mikus, P. and Rubinsky, B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180 (2008) 2668–2674. DOI: 10.1016/j.juro.2008.08.003.

    PubMed  Article  Google Scholar 

  8. Barrau, C., Teissié, J. and Gabriel, B. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochemistry 63 (2004) 327–332.

    PubMed  Article  CAS  Google Scholar 

  9. Pakhomova, O.N., Gregory, B.W. and Pakhomov, A.G. Facilitation of electroporative drug uptake and cell killing by electrosensitization. J. Cell. Mol. Med. 17 (2013) 154–159. DOI: 10.1111/j.1582-4934.2012.01658.x.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  10. Korohoda, W., Grys, M. and Madeja, Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell. Mol. Biol. Lett. 18 (2013) 102–119. DOI: 10.2478/s11658-012-0042-3.

    PubMed  Article  Google Scholar 

  11. Michalik, M., Pierzchalska, M., Pabiańczyk-Kulka, A. and Korohoda, W. Procaine-induced enhancement of fluid-phase endocytosis and inhibition of exocytosis In human skin fibroblasts. Europ. J. Pharmacol. 475 (2003) 1–10.

    Article  CAS  Google Scholar 

  12. Pierzchalska, M., Michalik, M., Stepień, E. and Korohoda, W. Changes in morphology of human skin fibroblasts induced by local anesthetics; role of actomyosin contraction. Europ. J. Pharmacol. 358 (1998) 235–244.

    Article  CAS  Google Scholar 

  13. Dickstein, R.A., Kiremidjian-Schumacher, L., and Stotzky, G. Effect of lidocaine on production of migration inhibitory factor and on macrophage motility. In vitro exposure of Guinea pig lymphocytes and macrophages. J. Leukocyte Biol. 36 (1984) 621–632.

    PubMed  CAS  Google Scholar 

  14. Djamgoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P. and Korohoda, W. Directional movement of rat prostate cancer cells in direct-curent electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114 (2001) 2697–2705.

    PubMed  CAS  Google Scholar 

  15. Krzysiek-Mączka, G. and Korohoda, W. Surface anisotropy orients cell divisions in contact guided cells. Folia Biol. 56 (2008) 13–19.

    Article  Google Scholar 

  16. Karmiol, S. Cell isolation and selection. In: Methods of Tissue Engineering. (Atala, A. and Lanza, R., Ed), Academic Press, San Diego, 2002, 19–35.

    Google Scholar 

  17. Kemp, R.B., Meredith, R.W.J., Gamble, S. and Frost, M. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo. Cytobios 36 (1983) 153–159.

    PubMed  CAS  Google Scholar 

  18. Szydłowska, H., Zaporowska, E., Kuszlik-Jochym, K., Korohoda, W. and Branny, J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 16 (1978) 69–78.

    Google Scholar 

  19. Zaporowska-Siwiak, E., Michalik, M., Kajstura, J. and Korohoda, W. Density-dependent survival of Ehrlich ascites tumor cells in the presence of various substratum for energy metabolism. J. Cell Sci. 77 (1985) 75–85.

    PubMed  CAS  Google Scholar 

  20. Schlieve, C.R., Lieven, C.J. and Levin, L.A. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Invest. Ophthal. Vis. Sci. 47 (2006) 3878–3886.

    PubMed  Article  Google Scholar 

  21. Ammar, D.A., Noecker, R.J. and Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 27 (2010) 837–845. DOI: 10.1007/s12325-010-0070-1.

    PubMed  Article  CAS  Google Scholar 

  22. Ambrose, E.J. Possible mechanisms of the transfer between small groups of cells. In: Ciba Foundation Symposium Cell Differentiation (A.V.S. de Reuck and J. Knight, Eds.), John Wiley&Sons, Ltd., Chichester, UK, 1967, 100–101.

    Google Scholar 

  23. Chow, W.S. and Barber, J. Salt dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces. J. Biochem. Biophys. Methods 3 (1980) 173–185.

    PubMed  Article  CAS  Google Scholar 

  24. Geng, T., Zhan, Y., Wang, H.Y., Witting, S.R., Cornetta, K.G., Lu, C. Flowthrough electroporation based on constant voltage for large-volume transfection of cells. J. Control. Rel. 144 (2010) 91–100. DOI: 10.1016/j.jconrel.2010.01.030.

    Article  CAS  Google Scholar 

  25. Geng, T., Zhan, Y. and Lu, C. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field. 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, 28 August–1 September, 2012, 2579–2582. DOI: 10.1109/EMBC.2012.6346491.

    Google Scholar 

  26. Giotta, G.J., Chau, D.S. and Wang, H.H. Binding of local anesthetics to phosphatidylcholine and phosphatidylserine liposomes. Arch. Biochem. Biophys. 163 (1974) 453–458.

    PubMed  Article  CAS  Google Scholar 

  27. Craiu, A. and Scadden, D. Flow electroporation with pulsed electric fields for purging tumor cells. Methods in Molecular Biology 22, The Humana Press, Totowa, NJ, 2008, 301–310. DOI: 10.1007/978-1-59745-194-9_22.

    Google Scholar 

  28. Eppich, H.M., Foxall, R., Gaynor, K., Dombkowski, D., Miura, N. and Cheng, T. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat. Biotechnol. 18 (2000) 882–887.

    PubMed  Article  CAS  Google Scholar 

  29. Sixou, S. and Teissié, J. Specific electropermeabilization of leukocytes in a blood sample and application to large volumes of cells. Biochim. Biophys. Acta 1028 (1990) 154–160.

    PubMed  Article  CAS  Google Scholar 

  30. Korohoda, W., Ambrose, E.J. and Forrester J.A. Some aspects of the dynamic characteristic of biological membranes. Folia Biol. 15 (1967) 371–393.

    CAS  Google Scholar 

  31. Korohoda, W., Forrester, J.A. Moreman, K.G. and Ambrose, E.J. Size changes in isolated nuclei of Ameba proteus on treatment with polyionic substances. Nature 217 (1968) 615–617.

    PubMed  Article  CAS  Google Scholar 

  32. Hanpft, R. and Mohr, K. Influence of cationic amphiphilic drugs on the phase-transition temperature of phospholipids with different polar groups. Biochim. Biophys. Acta-Biomembranes 814 (1985) 156–162.

    Article  CAS  Google Scholar 

  33. Gingell, D. Contractile responses at the surface of an amphibian egg. J. Embryol. Exp. Morphol. 23 (1970) 583–609.

    PubMed  CAS  Google Scholar 

  34. Korohoda, W. and Kurowska, A. Quantitative estimations of the thresholds of electrotactic responses in Amoeba proteus. Acta Protozool. 7 (1970) 375–382.

    Google Scholar 

  35. Korohoda, W., Mycielska, M., Janda, E. and Madeja, Z. Immediate and long-term galvanotactic responses of Ameba proteus to dc electric fields. Cell Motil. Cytoskeleton 45 (2000) 10–26.

    PubMed  Article  CAS  Google Scholar 

  36. Teissié, J. and Rols, M. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad. Sci. 720 (1994) 98–110.

    PubMed  Article  Google Scholar 

  37. Korohoda, J. and Strzałka, K. High efficiency genetic transformation in maize induced by exogeneous DNA. Z. Pflanzenphysiol. 94 (1979) 95–99.

    Article  CAS  Google Scholar 

  38. Madeja, Z., Rak, M., Wybieralska, E., Rożański, I., Masnyk, M., Chmielewski, M., Łysek, R., Chojnacki, T., Jankowski, W., Ciepichal, E., Świeżawska, E., Tekle, M. and Wallner, G. New cationic polyprenyl derivative proposed as a lipofecting agent. Acta Biochim. Pol. 54 (2007) 875–876.

    Google Scholar 

  39. Dougherty, T.J. An update on photodynamic therapy applications. J. Clin. Laser Med. Surg. 20 (2002) 3–7.

    PubMed  Article  Google Scholar 

  40. Nowak-Śliwińska, P., Karocki, A., Elas, M., Pawlak, A., Stochel, G. and Urbańska, K. Verteportin, photofrin II, and merocyanine 540 as pDT photosensitizers against melanoma cells. Biochim. Biophys. Res. Commun. 349 (2006) 549–555.

    Article  CAS  Google Scholar 

  41. Jóźwiak, Z. and Leyko, W. Role of membrane components in thermal injury and development of thermotolerance. Int. J. Radiat. Biol. 62 (1992) 743–56.

    PubMed  Article  Google Scholar 

  42. Kim, S.H., Kim, J.H., Alfieri, A.A., He, S.Q. and Young, C.W. Gossypol, a hyperthermic sensitizer of HeLa cells. Cancer Res. 45 (1985) 6338–6340.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Zbigniew Madeja or Włodzimierz Korohoda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grys, M., Madeja, Z. & Korohoda, W. Decreasing the thresholds for electroporation by sensitizing cells with local cationic anesthetics and substances that decrease the surface negative electric charge. Cell Mol Biol Lett 19, 65–76 (2014).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Selective sensitization of cells
  • Local cationic anesthetics
  • Cationic dyes
  • Irreversible electroporation
  • Reversible electroporation
  • Loading with fluorescent dyes
  • Cell viability
  • Flow through an electric field
  • Direct current electric field
  • Focused electric field