Skip to main content
  • Research Article
  • Published:

Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells

Abstract

Cancer is the second leading cause of death in South Africa. The critical role that microtubules play in cell division makes them an ideal target for the development of chemotherapeutic drugs that prevent the hyperproliferation of cancer cells. The new in silico-designed estradiol analogue 2-ethyl-3-O-sulfamoylestra-1,3,5(10)16-tetraene (ESE-16) was investigated in terms of its in vitro antiproliferative effects on the esophageal carcinoma SNO cell line at a concentration of 0.18 μM and an exposure time of 24 h. Polarization-optical differential interference contrast and triple fluorescent staining (propidium iodide, Hoechst 33342 and acridine orange) revealed a decrease in cell density, metaphase arrest, and the occurrence of apoptotic bodies in the ESE-16-treated cells when compared to relevant controls. Treated cells also showed an increase in the presence of acidic vacuoles and lysosomes, suggesting the occurrence of autophagic processes. Cell death via autophagy was confirmed using the Cyto-ID autophagy detection kit and the aggresome detection assay. Results showed an increase in autophagic vacuole and aggresome formation in ESE-16 treated cells, confirming the induction of cell death via autophagy. Cell cycle progression demonstrated an increase in the sub-G1 fraction (indicative of the presence of apoptosis). In addition, a reduction in mitochondrial membrane potential was also observed, which suggests the involvement of apoptotic cell death induced by ESE-16 via the intrinsic apoptotic pathway. In this study, it was demonstrated that ESE-16 induces cell death via both autophagy and apoptosis in esophageal carcinoma cells. This study paves the way for future investigation into the role of ESE-16 in ex vivo and in vivo studies as a possible anticancer agent.

Abbreviations

2ME:

2-methoxyestradiol

2-MeOE2bisMATE:

2-methoxyestradiolbis-sulfamate

AAF:

aggresome activity factor

AIF:

apoptosis inducing factor

AO:

acridine orange

Apaf-1:

apoptosis protease-activating factor

C9:

2-ethyl-3-Osulfamoylestra-1,3,5(10)-tetraen-3-ol-17-one

CAII:

carbonic anhydrase II

CAIX:

carbonic anhydrase IX

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethyl sulfoxide

EC:

esophageal cancer

ER:

estrogen receptor

ESE-16:

2-ethyl-3-O-sulfamoyl-estra-1,3,5(10)16-tetraene

FACS:

fluorescence-activated cell sorting

FB1:

fumonisin B1

HO:

Hoechst 33342

MFI:

mean fluorescent intensity

MOMP:

mitochondrial outer membrane permeabilization

PBS:

phosphate buffer saline

PE:

phosphatidylethanolamine

PI:

propidium iodide

PlasDIC:

polarization-optical transmitted light differential interference contrast microscopy

STS:

steroid sulfatase

References

  1. Kamangar, F., Dores, G.M. and Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24 (2006) 2137–2150.

    Article  PubMed  Google Scholar 

  2. Kamangar, F., Chow, W.H., Abnet, C.C. and Dawsey, S.M. Environmental causes of esophageal cancer. Gastroenterol. Clin. North Am. 38 (2009) 27–57.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Du, B., Zhao, Z., Sun, H., Ma, S., Jin, J. and Zhang, Z. Effects of 2-methoxyestradiol on proliferation, apoptosis and gene expression of cyclin B1 and c-Myc in esophageal carcinoma EC9706 cells. Cell. Biochem. Funct. 30 (2012) 158–165.

    Article  PubMed  CAS  Google Scholar 

  4. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 61 (2011) 69–90.

    Article  PubMed  Google Scholar 

  5. Chu, F.S. and Li, G.Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Appl. Environ. Microbiol. 60 (1994) 847–852.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Myburg, R.B., Dutton, M.F. and Chuturgoon, A.A. Cytotoxicity of fumonisin B1, diethylnitrosamine, and catechol on the SNO esophageal cancer cell line. Environ. Health Perspect. 110 (2002) 813–815.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Zhou, J. and Giannakakou, P. Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 5 (2005) 65–71.

    Article  PubMed  CAS  Google Scholar 

  8. Purohit, A., Hejaz, H.A., Walden, L., MacCarthy-Morrogh, L., Packham, G., Potter, B.V. and Reed, M.J. The effect of 2-methoxyoestrone-3-O-sulfamate on the growth of breast cancer cells and induced mammary tumors. Int. J. Cancer 85 (2000) 584–589.

    Article  PubMed  CAS  Google Scholar 

  9. Chua, Y.S., Chua, Y.L. and Hagen, T. Structure activity analysis of 2-methoxyestradiol analogues reveals targeting of microtubules as the major mechanism of antiproliferative and proapoptotic activity. Mol. Cancer Ther. 9 (2010) 224–235.

    Article  PubMed  CAS  Google Scholar 

  10. Stander, A., Joubert, F. and Joubert, A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem. Biol. Drug Des. 77 (2011) 173–181.

    Article  PubMed  CAS  Google Scholar 

  11. Choi, H.J. and Zhu, B.T. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim. Biophys. Acta 1823 (2012) 1306–1315.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Visagie, M., Mqoco, T. and Joubert, A. Sulphamoylated estradiol analogue induces antiproliferative activity and apoptosis in breast cell lines. Cell. Mol. Biol. Lett. 17 (2012) 549–558.

    Article  PubMed  CAS  Google Scholar 

  13. Mooberry, S.L. Mechanism of action of 2-methoxyestradiol: new developments. Drug Resist. Updat. 6 (2003) 355–361.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu, B.T. and Conney, A.H. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res. 58 (1998) 2269–2277.

    PubMed  CAS  Google Scholar 

  15. Mabjeesh, N.J., Escuin, D., LaVallee, T.M., Pribluda, V.S., Swartz, G.M., Johnson, M.S., Willard, M.T., Zhong, H., Simons, J.W. and Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3 (2003) 363–375.

    Article  PubMed  CAS  Google Scholar 

  16. Thaver, V., Lottering, M., van Papendorp, D. and Joubert, A. In vitro effects of 2-methoxyestradiol on cell numbers, morphology, cell cycle progression, and apoptosis induction in oesophagealcarcinoma cells. Cell Biochem. Funct. 27 (2009) 205–210.

    Article  PubMed  CAS  Google Scholar 

  17. Van Zijl, C., Lottering, M.L., Steffens, F. and Joubert, A. In vitro effects of 2-methoxyestradiol on MCF-12A and MCF-7 cell growth, morphology and mitotic spindle formation. Cell Biochem. Funct. 26 (2008) 632–642.

    Article  PubMed  CAS  Google Scholar 

  18. Voster, C.J.J. and Joubert, A.M. In vitro effects of 2-methoxyestradiol-bissulfamate on the non-tumorigenic MCF-12A cell line. Cell Biochem. Funct. 28 (2010) 412–419.

    Article  CAS  Google Scholar 

  19. Bruce, J.Y., Eickhoff, J., Pili, R., Logan, T., Carducci, M., Arnott, J., Treston, A., Wilding, G. and Liu, G. A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest. New Drugs 30 (2012) 794–802.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Harrison, M.R., Hahn, N.M., Pili, R., Oh, W.K., Hammers, H., Sweeney, C., Kim, K., Perlman, S., Arnott, J., Sidor, C., Wilding, G. and Liu, G. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest. New Drugs 29 (2011) 1465–1474.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Tevaarwerk, A.J., Holen, K.D., Alberti, D.B., Sidor, C., Arnott, J., Quon, C., Wilding, G. and Liu, G. Phase I trial of 2-methoxyestradiol NanoCrystal dispersion in advanced solid malignancies. Clin Cancer Res. 15 (2009) 1460–1465.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Newman, S.P., Ireson, C.R., Tutill, H.J., Day, J.M., Parsons, M.F., Leese, M.P., Potter, B.V.L., Reed, M.J. and Purohit, A. The role of 17beta-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells. Cancer Res. 66 (2006) 324–330.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, Q., Jin, W., Zhu, Y., Zhou, J., Lu, M. and Zhang, Q. Synthesis of 3′-methoxy-E-diethylstilbestrol and its analogs as tumor angiogenesis inhibitors. Steroids 77 (2012) 419–423.

    Article  PubMed  CAS  Google Scholar 

  24. Chiche, J., Ilc, K., Laferriere, J., Trottier, E., Dayan, F., Mazure, N.M., Brahimi-Horn, M.C. and Pouysségur, J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69 (2009) 358–368.

    Article  PubMed  CAS  Google Scholar 

  25. Visagie, M.H. and Joubert, A.M. In vitro effects of 2-methoxyestradiol-bissulfamate on reactive oxygen species and possible apoptosis induction in a breast adenocarcinoma cell line. Cancer Cell Int. 11 (2011) 43–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Supuran, C.T. and Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem. 15 (2007) 4336–4350.

    Article  PubMed  CAS  Google Scholar 

  27. Genis, C., Sippel, K.H., Case, N., Cao, W., Avvaru, B.S., Tartaglia, L.J., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D.N., Rosser, C.J. and McKenna, R. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties. Biochemistry 48 (2009) 1322–1331.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Stander, B.A., Joubert, F., Tu, C., Sippel, K.H., McKenna, R. and Joubert, A.M. In vitro evaluation of ESE-15-ol, an estradiol analogue with nanomolar antimitotic and carbonic anhydrase inhibitory activity. PLoS One 7 (2012) e52205–e52215.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Leese, M.P., Leblond, B., Newman, S.P., Purohit, A., Reed, M.J. and Potter, B.V. Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-Osulfamates. J. Steroid Biochem. Mol. Biol. 94 (2005) 239–251.

    Article  PubMed  CAS  Google Scholar 

  30. Chander, S.K., Foster, P.A., Leese, M.P., Newman, S.P., Potter, B.V., Purohit, A. and Reed, M.J. In vivo inhibition of angiogenesis by sulfamoylated derivatives of 2-methoxyoestradiol. Br. J. Cancer 96 (2007) 1368–1376.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Visagie, M.H. and Joubert, A.M. The in vitro effects of 2-methoxyestradiolbis-sulfamate on cell numbers, membrane integrity and cell morphology, and the possible induction of apoptosis and autophagy in a non-tumorigenic breast epithelial cell line. Cell. Mol. Biol. Lett. 15 (2010) 564–581.

    Article  PubMed  CAS  Google Scholar 

  32. Stander, B.A., Joubert, F., Tu, C., Sippel, K.H., McKenna, R. and Joubert, A.M. Signaling pathways of ESE-16, an antimitotic and anticarbonic anhydrase estradiol analog, in breast cancer cells. PLoS One 8 (2013) e53853–e53871.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Mqoco, T., Marais, S. and Joubert, A. Influence of estradiol analogue on cell growth, morphology and death in esophageal carcinoma cells. Biocell 34 (2010) 113–120.

    PubMed  CAS  Google Scholar 

  34. Stander, X.X., Stander, B.A. and Joubert, A.M. In vitro effects of an in silicomodelled 17-beta-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell. Prolif. 44 (2011) 567–581.

    Article  PubMed  CAS  Google Scholar 

  35. Stander, B.A., Marais, S., Vorster, C.J. and Joubert, A.M. In vitro effects of 2-methoxyestradiol on morphology, cell cycle progression, cell death and gene expression changes in the tumorigenic MCF-7 breast epithelial cell line. J. Steroid Biochem. Mol. Biol. 119 (2010) 149–160.

    Article  PubMed  CAS  Google Scholar 

  36. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. and Germano, I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63 (2003) 2103–2108.

    PubMed  CAS  Google Scholar 

  37. Knizhnik, A.V., Roos, W.P., Nikolova, T., Quiros, S., Tomaszowski, K.H., Christmann, M. and Kaina, B. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8 (2013) e55665–e55676.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Moriya, S., Che, X.F., Komatsu, S., Abe, A., Kawaguchi, T., Gotoh, A., Inazu, M., Tomoda, A. and Miyazawa, K. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int. J. Oncol. 42 (2013) 1541–1550.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S. and Fischbeck, H. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12 (2003) 749–757.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Mata, R., Gao, Y.S. and Sztul, E. Hassles with taking out the garbage: aggravating aggresomes. Traffic 3 (2002) 388–396.

    Article  PubMed  CAS  Google Scholar 

  41. Simms-Waldrip, T., Rodriguez-Gonzalez, A., Lin, T., Ikeda, A.K., Fu, C. and Sakamoto, K.M. The aggresome pathway as a target for therapy in hematologic malignancies. Mol. Genet. Metab. 94 (2008) 283–286.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Nkandeu, D.S., Mqoco, T.V., Visagie, M.H., Stander, B.A., Wolmarans, E., Cronje, M.J. and Joubert, A.M. In vitro changes in mitochondrial potential, aggresome formation and caspase activity by a novel 17-beta-estradiol analogue in breast adenocarcinoma cells. Cell. Biochem. Funct. 31 (2013) 566–574.

    PubMed  CAS  Google Scholar 

  43. Bialik, S., Zalckvar, E., Ber, Y., Rubinstein, A.D. and Kimchi, A. Systems biology analysis of programmed cell death. Trends Biochem. Sci. 35 (2010) 556–564.

    Article  PubMed  CAS  Google Scholar 

  44. Pradelli, L.A., Beneteau, M. and Ricci, J.E. Mitochondrial control of caspase-dependent and -independent cell death. Cell. Mol. Life. Sci. 67 (2010) 1589–1597.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, C. and Klionsky, D.J. The Molecular Mechanism of Autophagy. Mol. Med. 9 (2003) 65–76.

    PubMed Central  PubMed  Google Scholar 

  46. Tanida, I., Ueno, T. and Kominami, E. LC3 and Autophagy. Methods Mol. Biol. 445 (2008) 77–88.

    Article  PubMed  CAS  Google Scholar 

  47. Zaarur, N., Meriin, A.B., Gabai, V.L. and Sherman, M.Y. Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J. Biol. Chem. 283 (2008) 27575–27584.

    Article  PubMed  CAS  Google Scholar 

  48. Hsieh, Y.C., Athar, M. and Chaudry, I.H. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol. Med. 15 (2009) 129–138.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Thorburn, A. Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13 (2008) 1–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Maiuri, M.C., Zalckvar, E., Kimchi, A. and Kroemer, G. Self-eating and Self-killing: crosstalk between autophagy and apoptosis. Mol. Cell Biol. 8 (2007) 741–752.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Joubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolmarans, E., Mqoco, T.V., Stander, A. et al. Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells. Cell Mol Biol Lett 19, 98–115 (2014). https://doi.org/10.2478/s11658-014-0183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0183-7

Keywords