Skip to main content
  • Mini Review
  • Published:

Spectrin and phospholipids — the current picture of their fascinating interplay

Abstract

The spectrin-based membrane skeleton is crucial for the mechanical stability and resilience of erythrocytes. It mainly contributes to membrane integrity, protein organization and trafficking. Two transmembrane protein macro-complexes that are linked together by spectrin tetramers play a crucial role in attaching the membrane skeleton to the cell membrane, but they are not exclusive. Considerable experimental data have shown that direct interactions between spectrin and membrane lipids are important for cell membrane cohesion. Spectrin is a multidomain, multifunctional protein with several distinctive structural regions, including lipid-binding sites within CH tandem domains, a PH domain, and triple helical segments, which are excellent examples of ligand specificity hidden in a regular repetitive structure, as recently shown for the ankyrin-sensitive lipid-binding domain of beta spectrin. In this review, we summarize the state of knowledge about interactions between spectrin and membrane lipids.

Abbreviations

ABD:

actin-binding domain

AE1:

anion exchanger 1

Ank:

ankyrin

CH:

calponin homology domain

GPC:

glycophorin C

MPP1:

membrane palmitoylated protein 1

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PH:

pleckstrin homology domain

PI:

phosphatidylinositol

PI(4,5)P2 :

phosphatidylinositol-4,5-bisphosphate

PS:

phosphatidylserine

SH3:

SRC homology 3 domain

UPA:

Unc5-PIDD-ankyrin domain

ZU5:

domain present in ZO-1 and Unc5-like netrin receptors

References

  1. Marchesi, V.T. and Steers, E., Jr. Selective solubilization of a protein component of the red cell membrane. Science 159 (1968) 203–204.

    PubMed  CAS  Google Scholar 

  2. Sahr, K.E., Laurila, P., Kotula, L., Scarpa, A.L., Coupal, E., Leto, T.L., Linnenbach, A.J., Winkelmann, J.C., Speicher, D.W., Marchesi, V.T, Curtis, P.J. and Forget, B.G. The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J. Biol. Chem. 265 (1990) 4434–4443.

    PubMed  CAS  Google Scholar 

  3. Winkelmann, J.C., Chang, J.G., Tse, W.T., Scarpa, A.L., Marchesi, V.T. and Forget, B.G. Full-length sequence of the cDNA for human erythroid beta-spectrin. J. Biol. Chem. 265 (1990) 11827–11832.

    PubMed  CAS  Google Scholar 

  4. Sevinc, A., Witek, M.A. and Fung, L.W. Yeast two-hybrid and itc studies of alpha and beta spectrin interaction at the tetramerization site. Cell. Mol. Biol. Lett. 16 (2011) 452–461.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Speicher, D.W. and Marchesi, V.T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311 (1984) 177–180.

    PubMed  CAS  Google Scholar 

  6. Sevinc, A. and Fung, L.W. Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Cell. Mol. Biol. Lett. 16 (2011) 595–609.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Byers, T.J. and Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. U S A 82 (1985) 6153–6157.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Liu, S.C., Derick, L.H. and Palek, J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104 (1987) 527–536.

    PubMed  CAS  Google Scholar 

  9. Swihart, A.H., Mikrut, J.M., Ketterson, J.B. and Macdonald, R.C. Atomic force microscopy of the erythrocyte membrane skeleton. J. Microsc. 204 (2001) 212–225.

    PubMed  CAS  Google Scholar 

  10. Nans, A., Mohandas, N. and Stokes, D.L. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys. J. 101 (2011) 2341–2350.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Ursitti, J.A., Kotula, L., DeSilva, T.M., Curtis, P.J. and Speicher, D.W. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site. J. Biol. Chem. 271 (1996) 6636–6644.

    PubMed  CAS  Google Scholar 

  12. Morrow, J.S. and Marchesi, V.T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J. Cell Biol. 88 (1981) 463–468.

    PubMed  CAS  Google Scholar 

  13. Machnicka, B., Czogalla, A., Hryniewicz-Jankowska, A., Boguslawska, D.M., Grochowalska, R., Heger, E. and Sikorski, A.F. Spectrins: A structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim. Biophys. Acta 1838 (2014) 620–634.

    PubMed  CAS  Google Scholar 

  14. De Matteis, M.A. and Morrow, J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (2000) 2331–2343.

    PubMed  Google Scholar 

  15. Machnicka, B., Grochowalska, R., Boguslawska, D.M., Sikorski, A.F. and Lecomte, M.C. Spectrin-based skeleton as an actor in cell signaling. Cell. Mol. Life Sci. 69 (2012) 191–201.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Yan, Y., Winograd, E., Viel, A., Cronin, T., Harrison, S.C. and Branton, D. Crystal structure of the repetitive segments of spectrin. Science 262 (1993) 2027–2030.

    PubMed  CAS  Google Scholar 

  17. Kotula, L., DeSilva, T.M., Speicher, D.W. and Curtis, P.J. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J. Biol. Chem. 268 (1993) 14788–14793.

    PubMed  CAS  Google Scholar 

  18. Wasenius, V.M., Saraste, M., Salven, P., Eramaa, M., Holm, L. and Lehto, V.P. Primary structure of the brain alpha-spectrin. J. Cell Biol. 108 (1989) 79–93.

    PubMed  CAS  Google Scholar 

  19. Pawson, T. Protein modules and signalling networks. Nature 373 (1995) 573–580.

    PubMed  CAS  Google Scholar 

  20. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. and Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359 (1992) 851–855.

    PubMed  CAS  Google Scholar 

  21. Rotter, B., Kroviarski, Y., Nicolas, G., Dhermy, D. and Lecomte, M.C. AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochem. J. 378 (2004) 161–168.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Glantz, S.B., Cianci, C.D., Iyer, R., Pradhan, D., Wang, K.K. and Morrow, J.S. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 46 (2007) 502–513.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Harris, A.S., Croall, D.E. and Morrow, J.S. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. 263 (1988) 15754–15761.

    PubMed  CAS  Google Scholar 

  24. Harris, A.S. and Morrow, J.S. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J. Neurosci. 8 (1988) 2640–2651.

    PubMed  CAS  Google Scholar 

  25. Harris, A.S. and Morrow, J.S. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc. Natl. Acad. Sci. USA 87 (1990) 3009–3013.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Nicolas, G., Fournier, C.M., Galand, C., Malbert-Colas, L., Bournier, O., Kroviarski, Y., Bourgeois, M., Camonis, J.H., Dhermy, D., Grandchamp, B. and Lecomte M.C. Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol. Cell. Biol. 22 (2002) 3527–3536.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Nedrelow, J.H., Cianci, C.D. and Morrow, J.S. c-Src binds alpha II spectrin’s Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J. Biol. Chem. 278 (2003) 7735–7741.

    PubMed  CAS  Google Scholar 

  28. Buevich, A.V., Lundberg, S., Sethson, I., Edlund, U. and Backman, L. NMR studies of calcium-binding to mutant alpha-spectrin EF-hands. Cell. Mol. Biol. Lett. 9 (2004) 167–186.

    PubMed  CAS  Google Scholar 

  29. Feng, Y.D., Li, J., Zhou, W.C., Jia, Z.G. and Wei, Q. Identification of the critical structural determinants of the EF-hand domain arrangements in calcium binding proteins. Biochim. Biophys. Acta 1824 (2012) 608–619.

    PubMed  CAS  Google Scholar 

  30. Lundberg, S., Buevich, A.V., Sethson, I., Edlund, U. and Backman, L. Calcium-binding mechanism of human non-erythroid alpha-spectrin EFstructures. Biochemistry 36 (1997) 7199–7208.

    PubMed  CAS  Google Scholar 

  31. Trave, G., Lacombe, P.J., Pfuhl, M., Saraste, M. and Pastore, A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J. 14 (1995) 4922–4931.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Nestor, M.W., Cai, X., Stone, M.R., Bloch, R.J. and Thompson, S.M. The actin-binding domain of betaI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS One 6 (2011) e16197.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Karinch, A.M., Zimmer, W.E. and Goodman, S.R. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J. Biol. Chem. 265 (1990) 11833–11840.

    PubMed  CAS  Google Scholar 

  34. Macias, M.J., Musacchio, A., Ponstingl, H., Nilges, M., Saraste, M. and Oschkinat, H. Structure of the pleckstrin homology domain from betaspectrin. Nature 369 (1994) 675–677.

    PubMed  CAS  Google Scholar 

  35. Zhang, P., Talluri, S., Deng, H., Branton, D. and Wagner, G. Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure 3 (1995) 1185–1195.

    PubMed  CAS  Google Scholar 

  36. Zhang, P., Sridharan, D. and Lambert, M.W. Knockdown of mu-calpain in Fanconi anemia, FA-A, cells by siRNA restores alphaII spectrin levels and corrects chromosomal instability and defective DNA interstrand cross-link repair. Biochemistry 49 (2010) 5570–5581.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Bennett, V. and Stenbuck, P.J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254 (1979) 2533–2541.

    PubMed  CAS  Google Scholar 

  38. Bennett, V. and Healy, J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol. Med. 14 (2008) 28–36.

    PubMed  CAS  Google Scholar 

  39. Luna, E.J., Kidd, G.H. and Branton, D. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes. J. Biol. Chem. 254 (1979) 2526–2532.

    PubMed  CAS  Google Scholar 

  40. Yu, J. and Goodman, S.R. Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 76 (1979) 2340–2344.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Ipsaro, J.J., Harper, S.L., Messick, T.E., Marmorstein, R., Mondragon, A. and Speicher, D.W. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115 (2010) 4843–4852.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. La-Borde, P.J., Stabach, P.R., Simonovic, I., Morrow, J.S. and Simonovic, M. Ankyrin recognizes both surface character and shape of the 14–15 di-repeat of beta-spectrin. Biochem. Biophys. Res. Commun. 392 (2010) 490–494.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Kolondra, A., Grzybek, M., Chorzalska, A. and Sikorski, A.F. The 22.5 kDa spectrin-binding domain of ankyrinR binds spectrin with high affinity and changes the spectrin distribution in cells in vivo. Protein Expr. Purif. 60 (2008) 157–164.

    PubMed  CAS  Google Scholar 

  44. Lu, P.W., Soong, C.J. and Tao, M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J. Biol. Chem. 260 (1985) 14958–14964.

    PubMed  CAS  Google Scholar 

  45. Kolondra, A., Lenoir, M., Wolny, M., Czogalla, A., Overduin, M., Sikorski, A.F. and Grzybek, M. The role of hydrophobic interactions in ankyrin-spectrin complex formation. Biochim. Biophys. Acta 1798 (2010) 2084–2089.

    PubMed  CAS  Google Scholar 

  46. Yasunaga, M., Ipsaro, J.J. and Mondragon, A. Structurally similar but functionally diverse ZU5 domains in human erythrocyte ankyrin. J. Mol. Biol. 417 (2012) 336–350.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Czogalla, A. and Sikorski, A.F. Do we already know how spectrin attracts ankyrin? Cell. Mol. Life Sci. 67 (2010) 2679–2683.

    PubMed  CAS  Google Scholar 

  48. Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353–1392.

    PubMed  CAS  Google Scholar 

  49. Stefanovic, M., Markham, N.O., Parry, E.M., Garrett-Beal, L.J., Cline, A.P., Gallagher, P.G., Low, P.S. and Bodine, D.M. An 11-amino acid betahairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes. Proc. Natl. Acad. Sci. USA 104 (2007) 13972–13977.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Kim, S., Brandon, S., Zhou, Z., Cobb, C.E., Edwards, S.J., Moth, C.W., Parry, C.S., Smith, J.A., Lybrand, T.P., Hustedt, E.J. and Beth, A.H. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13–24. J. Biol. Chem. 286 (2011) 20746–20757.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Nicolas, V., Le Van Kim, C., Gane, P., Birkenmeier, C., Cartron, J.P., Colin, Y. and Mouro-Chanteloup, I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J. Biol. Chem. 278 (2003) 25526–25533.

    PubMed  CAS  Google Scholar 

  52. Bruce, L.J., Beckmann, R., Ribeiro, M.L., Peters, L.L., Chasis, J.A., Delaunay, J., Mohandas, N., Anstee, D.J. and Tanner, M.J. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 101 (2003) 4180–4188.

    PubMed  CAS  Google Scholar 

  53. Franco, T. and Low, P.S. Erythrocyte adducin: a structural regulator of the red blood cell membrane. Transfus. Clin. Biol. 17 (2010) 87–94.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Gauthier, E., Guo, X., Mohandas, N. and An, X. Phosphorylationdependent perturbations of the 4.1R-associated multiprotein complex of the erythrocyte membrane. Biochemistry 50 (2011) 4561–4567.

    PubMed  CAS  Google Scholar 

  55. Khan, A.A., Hanada, T., Mohseni, M., Jeong, J.J., Zeng, L., Gaetani, M., Li, D., Reed, B.C., Speicher, D.W. and Chishti, A.H. Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J. Biol. Chem. 283 (2008) 14600–14609.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Salomao, M., Zhang, X., Yang, Y., Lee, S., Hartwig, J.H., Chasis, J.A., Mohandas, N. and An, X. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc. Natl. Acad. Sci. U S A 105 (2008) 8026–8031.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J. and Mohandas, N. Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J. Biol. Chem. 275 (2000) 24540–24546.

    PubMed  CAS  Google Scholar 

  58. Chishti, A.H., Kim, A.C., Marfatia, S.M., Lutchman, M., Hanspal, M., Jindal, H., Liu, S.C., Low, P.S., Rouleau, G.A., Mohandas, N., Chasis, J.A., Conboy, J.G., Gascard, P., Takakuwa, Y., Huang, S.C., Benz, E.J. Jr, Bretscher, A., Fehon, R.G., Gusella, J.F., Ramesh, V., Solomon, F., Marchesi, V.T., Tsukita, S., Tsukita, S., Arpin, M., Louvard, D., Tonks, N.K., Anderson, J.M., Fanning, A.S., Bryant, P.J., Woods, D.F. and Hoover K.B. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23 (1998) 281–282.

    PubMed  CAS  Google Scholar 

  59. Diakowski, W., Grzybek, M. and Sikorski, A.F. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol. 44 (2006) 231–248.

    PubMed  CAS  Google Scholar 

  60. Koshino, I., Mohandas, N. and Takakuwa, Y. Identification of a novel role for dematin in regulating red cell membrane function by modulating spectrin-actin interaction. J. Biol. Chem. 287 (2012) 35244–35250.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Korsgren, C., Peters, L.L. and Lux, S.E. Protein 4.2 binds to the carboxylterminal EF-hands of erythroid alpha-spectrin in a calcium- and calmodulin-dependent manner. J. Biol. Chem. 285 (2010) 4757–4770.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Delaunay, J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 21 (2007) 1–20.

    PubMed  CAS  Google Scholar 

  63. Boguslawska, D.M., Heger, E. and Sikorski, A.F. [Molecular mechanism of hereditary spherocytosis]. Pol. Merkur. Lekarski 20 (2006) 112–116.

    PubMed  Google Scholar 

  64. Barcellini, W., Bianchi, P., Fermo, E., Imperiali, F.G., Marcello, A.P., Vercellati, C., Zaninoni, A. and Zanella, A. Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus. 9 (2011) 274–277.

    PubMed Central  PubMed  Google Scholar 

  65. An, X. and Mohandas, N. Disorders of red cell membrane. Br. J. Haematol. 141 (2008) 367–375.

    PubMed  CAS  Google Scholar 

  66. Mombers, C., de Gier, J., Demel, R.A. and van Deenen, L.L. Spectrin-phospholipid interaction. A monolayer study. Biochim. Biophys. Acta 603 (1980) 52–62.

    PubMed  CAS  Google Scholar 

  67. Haest, C.W. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim. Biophys. Acta 694 (1982) 331–352.

    PubMed  CAS  Google Scholar 

  68. Sikorski, A.F., Hanus-Lorenz, B., Jezierski, A. and Dluzewski, A.R. Interaction of membrane skeletal proteins with membrane lipid domain. Acta Biochim. Pol. 47 (2000) 565–578.

    PubMed  CAS  Google Scholar 

  69. Isenberg, H., Kenna, J.G., Green, N.M. and Gratzer, W.B. Binding of hydrophobic ligands to spectrin. FEBS Lett. 129 (1981) 109–112.

    PubMed  CAS  Google Scholar 

  70. Kahana, E., Pinder, J.C., Smith, K.S. and Gratzer, W.B. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem. J. 282 (1992) 75–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Bitbol, M., Dempsey, C., Watts, A. and Devaux, P.F. Weak interaction of spectrin with phosphatidylcholine-phosphatidylserine multilayers: a 2H and 31P NMR study. FEBS Lett. 244 (1989) 217–222.

    PubMed  CAS  Google Scholar 

  72. Sikorski, A.F., Michalak, K. and Bobrowska, M. Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim. Biophys. Acta 904 (1987) 55–60.

    PubMed  CAS  Google Scholar 

  73. Sikorski, A.F., Michalak, K., Bobrowska, M. and Kozubek, A. Interaction of spectrin with some amphipatic compunds. Stud. Biophys. 121 (1987) 183–191.

    CAS  Google Scholar 

  74. Sikorski, A.F. Interaction of spectrin with hydrophobic agaroses. Acta Biochim. Pol. 35 (1988) 19–27.

    PubMed  CAS  Google Scholar 

  75. Grzybek, M., Chorzalska, A., Bok, E., Hryniewicz-Jankowska, A., Czogalla, A., Diakowski, W. and Sikorski, A.F. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem. Phys. Lipids 141 (2006) 133–141.

    PubMed  CAS  Google Scholar 

  76. Sikorski, A.F., Czogalla, A., Hryniewicz-Jankowska, A., Bok, E., Plażuk, E., Diakowski, W., Chorzalska, A., Kolondra, A., Langner, M. and Grzybek, M. Interactions of erythroid and non-erythroid spectrins and other membrane skeletal proteins with lipid mono- and bilayers. in: Advances in Planar Lipid Bilayers and Liposomes (Leitmannova, L.A., Ed.), Elsevier, 2008, 81–102.

    Google Scholar 

  77. Bialkowska, K., Zembron, A. and Sikorski, A.F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta 1191 (1994) 21–26.

    PubMed  CAS  Google Scholar 

  78. O’Toole, P.J., Morrison, I.E. and Cherry, R.J. Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim. Biophys. Acta 1466 (2000) 39–46.

    PubMed  Google Scholar 

  79. Michalak, K., Bobrowska, M. and Sikorski, A.F. Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen. Physiol. Biophys. 12 (1993) 163–170.

    PubMed  CAS  Google Scholar 

  80. Diakowski, W. and Sikorski, A.F. Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34 (1995) 13252–13258.

    PubMed  CAS  Google Scholar 

  81. Juliano, R.L., Kimelberg, H.K. and Papahadjopoulos, D. Synergistic effects of a membrane protein (spectrin) and Ca 2+ on the Na + permeability of phospholipid vesicles. Biochim. Biophys. Acta 241 (1971) 894–905.

    PubMed  CAS  Google Scholar 

  82. Bandorowicz-Pikula, J., Sikorski, A.F., Bialkowska, K. and Sobota, A. Interaction of annexins IV and VI with phosphatidylserine in the presence of Ca2+: monolayer and proteolytic study. Mol. Membr. Biol. 13 (1996) 241–250.

    PubMed  CAS  Google Scholar 

  83. Sobota, A., Bandorowicz, J., Jezierski, A. and Sikorski, A.F. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett. 315 (1993) 178–182.

    PubMed  CAS  Google Scholar 

  84. Czogalla, A. and Sikorski, A.F. Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell. Mol. Life Sci. 62 (2005) 1913–1924.

    PubMed  CAS  Google Scholar 

  85. Lofvenberg, L. and Backman, L. Calpain-induced proteolysis of betaspectrins. FEBS Lett. 443 (1999) 89–92.

    PubMed  CAS  Google Scholar 

  86. Ray, S. and Chakrabarti, A. Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Mol. Membr. Biol. 21 (2004) 93–100.

    PubMed  CAS  Google Scholar 

  87. Verkleij, A.J., Zwaal, R.F., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L.L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323 (1973) 178–193.

    PubMed  CAS  Google Scholar 

  88. van Zwieten, R., Bochem, A.E., Hilarius, P.M., van Bruggen, R., Bergkamp, F., Hovingh, G.K. and Verhoeven, A.J. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim. Biophys. Acta 1821 (2012) 1493–1500.

    PubMed  Google Scholar 

  89. Diakowski, W., Prychidny, A., Swistak, M., Nietubyc, M., Bialkowska, K., Szopa, J. and Sikorski, A.F. Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Biochem. J. 338 (1999) 83–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Diakowski, W. and Sikorski, A.F. Brain spectrin exerts much stronger effect on anionic phospholipid monolayers than erythroid spectrin. Biochim. Biophys. Acta 1564 (2002) 403–411.

    PubMed  CAS  Google Scholar 

  91. Diakowski, W., Szopa, J. and Sikorski, A.F. Occurrence of lipid receptors inferred from brain and erythrocyte spectrins binding NaOH-extracted and protease-treated neuronal and erythrocyte membranes. Biochim. Biophys. Acta 1611 (2003) 115–122.

    PubMed  CAS  Google Scholar 

  92. Diakowski, W., Ozimek, L., Bielska, E., Bem, S., Langner, M. and Sikorski, A.F. Cholesterol affects spectrin-phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl chain composition. Biochim. Biophys. Acta 1758 (2006) 4–12.

    PubMed  CAS  Google Scholar 

  93. Simons, K. and Sampaio, J.L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3 (2011) a004697.

    PubMed Central  PubMed  Google Scholar 

  94. Grzybek, M., Kozubek, A., Dubielecka, P. and Sikorski, A.F. Rafts—the current picture. Folia Histochem. Cytobiol. 43 (2005) 3–10.

    PubMed  CAS  Google Scholar 

  95. Thompson, J.M., Ellis, R.E., Green, E.M., Winlove, C.P. and Petrov, P.G. Spectrin maintains the lateral order in phosphatidylserine monolayers. Chem. Phys. Lipids 151 (2008) 66–68.

    PubMed  CAS  Google Scholar 

  96. Manno, S., Takakuwa, Y. and Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserineskeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. U S A 99 (2002) 1943–1948.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Manno, S., Mohandas, N. and Takakuwa, Y. ATP-dependent mechanism protects spectrin against glycation in human erythrocytes. J. Biol. Chem. 285 (2010) 33923–33929.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Sarkis, J., Hubert, J.F., Legrand, B., Robert, E., Cheron, A., Jardin, J., Hitti, E., Le Rumeur, E. and Vie, V. Spectrin-like repeats 11–15 of human dystrophin show adaptations to a lipidic environment. J. Biol. Chem. 286 (2011) 30481–30491.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Le Rumeur, E., Fichou, Y., Pottier, S., Gaboriau, F., Rondeau-Mouro, C., Vincent, M., Gallay, J. and Bondon, A. Interaction of dystrophin rod domain with membrane phospholipids. Evidence of a close proximity between tryptophan residues and lipids. J. Biol. Chem. 278 (2003) 5993–6001.

    PubMed  Google Scholar 

  100. DeWolf, C., McCauley, P., Sikorski, A.F., Winlove, C.P., Bailey, A.I., Kahana, E., Pinder, J.C. and Gratzer, W.B. Interaction of dystrophin fragments with model membranes. Biophys. J. 72 (1997) 2599–2604.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. An, X., Guo, X., Wu, Y. and Mohandas, N. Phosphatidylserine binding sites in red cell spectrin. Blood Cells Mol. Dis. 32 (2004) 430–432.

    PubMed  CAS  Google Scholar 

  102. An, X., Guo, X., Sum, H., Morrow, J., Gratzer, W. and Mohandas, N. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43 (2004) 310–315.

    PubMed  CAS  Google Scholar 

  103. Hryniewicz-Jankowska, A., Bok, E., Dubielecka, P., Chorzalska, A., Diakowski, W., Jezierski, A., Lisowski, M. and Sikorski, A.F. Mapping of an ankyrinsensitive, phosphatidylethanolamine/phosphatidylcholine mono- and bi-layer binding site in erythroid beta-spectrin. Biochem. J. 382 (2004) 677–685.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Wolny, M., Grzybek, M., Bok, E., Chorzalska, A., Lenoir, M., Czogalla, A., Adamczyk, K., Kolondra, A., Diakowski, W., Overduin, M. and Sikorski, A.F. Key amino acid residues of ankyrin-sensitive phosphatidylethanolamine/phosphatidylcholine-lipid binding site of betaI-spectrin. PLoS One 6 (2011) e21538.

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Bok, E., Plazuk, E., Hryniewicz-Jankowska, A., Chorzalska, A., Szmaj, A., Dubielecka, P.M., Stebelska, K., Diakowski, W., Lisowski, M., Langner, M. and Sikorski, A.F. Lipid-binding role of betaII-spectrin ankyrin-binding domain. Cell. Biol. Int. 31 (2007) 1482–1494.

    PubMed  CAS  Google Scholar 

  106. Baines, A.J. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244 (2010) 99–131.

    PubMed  CAS  Google Scholar 

  107. Le Rumeur, E., Hubert, J.F. and Winder, S.J. A new twist to coiled coil. FEBS Lett. 586 (2012) 2717–2722.

    PubMed  Google Scholar 

  108. Kahana, E. and Gratzer, W.B. Minimum folding unit of dystrophin rod domain. Biochemistry 34 (1995) 8110–8114.

    PubMed  CAS  Google Scholar 

  109. Legardinier, S., Raguenes-Nicol, C., Tascon, C., Rocher, C., Hardy, S., Hubert, J.F. and Le Rumeur, E. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J. Mol. Biol. 389 (2009) 546–558.

    PubMed  CAS  Google Scholar 

  110. Sarkis, J., Vie, V., Winder, S.J., Renault, A., Le Rumeur, E. and Hubert, J.F. Resisting sarcolemmal rupture: dystrophin repeats increase membraneactin stiffness. FASEB J. 27 (2013) 359–367.

    PubMed  CAS  Google Scholar 

  111. Vie, V., Legardinier, S., Chieze, L., Le Bihan, O., Qin, Y., Sarkis, J., Hubert, J.F., Renault, A., Desbat, B. and Le Rumeur, E. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PMIRRAS. Biochim. Biophys. Acta 1798 (2010) 1503–1511.

    PubMed  CAS  Google Scholar 

  112. Czogalla, A., Grzymajlo, K., Jezierski, A. and Sikorski, A.F. Phospholipidinduced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim. Biophys. Acta 1778 (2008) 2612–2620.

    PubMed  CAS  Google Scholar 

  113. An, X., Guo, X., Gratzer, W. and Mohandas, N. Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem. Biophys. Res. Commun. 327 (2005) 794–800.

    PubMed  CAS  Google Scholar 

  114. An, X., Debnath, G., Guo, X., Liu, S., Lux, S.E., Baines, A., Gratzer, W. and Mohandas, N. Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4, 5-bisphosphate. Biochemistry 44 (2005) 10681–10688.

    PubMed  CAS  Google Scholar 

  115. Franzot, G., Sjoblom, B., Gautel, M. and Djinovic Carugo, K. The crystal structure of the actin-binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alphaactinin. J. Mol. Biol. 348 (2005) 151–165.

    PubMed  CAS  Google Scholar 

  116. Young, P. and Gautel, M. The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J. 19 (2000) 6331–6340.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Hyvonen, M., Macias, M.J., Nilges, M., Oschkinat, H., Saraste, M. and Wilmanns, M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14 (1995) 4676–4685.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Scheffzek, K. and Welti, S. Pleckstrin homology (PH) like domains — versatile modules in protein-protein interaction platforms. FEBS Lett. 586 (2012) 2662–2673.

    PubMed  CAS  Google Scholar 

  119. Lemmon, M.A. Pleckstrin homology domains: two halves make a hole? Cell 120 (2005) 574–576.

    PubMed  CAS  Google Scholar 

  120. Lemmon, M.A., Ferguson, K.M. and Abrams, C.S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513 (2002) 71–76.

    PubMed  CAS  Google Scholar 

  121. Godi, A., Santone, I., Pertile, P., Devarajan, P., Stabach, P.R., Morrow, J.S., Di Tullio, G., Polishchuk, R., Petrucci, T.C., Luini, A. and De Matteis, M.A. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl. Acad. Sci. USA 95 (1998) 8607–8612.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Muresan, V., Stankewich, M.C., Steffen, W., Morrow, J.S., Holzbaur, E.L. and Schnapp, B.J. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell 7 (2001) 173–183.

    PubMed  CAS  Google Scholar 

  123. Das, A., Base, C., Manna, D., Cho, W. and Dubreuil, R.R. Unexpected complexity in the mechanisms that target assembly of the spectrin cytoskeleton. J. Biol. Chem. 283 (2008) 12643–12653.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Bialkowska, K., Zembron, A. and Sikorski, A.F. Ankyrin shares a binding site with phospholipid vesicles on erythrocyte spectrin. Acta Biochim. Pol. 41 (1994) 155–157.

    PubMed  CAS  Google Scholar 

  125. Bialkowska, K., Lesniewski, J., Nietubyc, M. and Sikorski, A.F. Interaction of spectrin with phospholipids is inhibited by isolated erythrocyte ankyrin. A monolayer study. Cell. Mol. Biol. Lett. 4 (1999) 203–218.

    CAS  Google Scholar 

  126. Kennedy, S.P., Warren, S.L., Forget, B.G. and Morrow, J.S. Ankyrin binds to the 15th repetitive unit of erythroid and non-erythroid beta-spectrin. J. Cell Biol. 115 (1991) 267–277.

    PubMed  CAS  Google Scholar 

  127. Stabach, P.R., Simonovic, I., Ranieri, M.A., Aboodi, M.S., Steitz, T.A., Simonovic, M. and Morrow, J.S. The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113 (2009) 5377–5384.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Czogalla, A., Jaszewski, A.R., Diakowski, W., Bok, E., Jezierski, A. and Sikorski, A.F. Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol. Membr. Biol. 24 (2007) 215–224.

    PubMed  CAS  Google Scholar 

  129. Davis, L., Abdi, K., Machius, M., Brautigam, C., Tomchick, D.R., Bennett, V. and Michaely, P. Localization and structure of the ankyrin-binding site on beta2-spectrin. J. Biol. Chem. 284 (2009) 6982–6987.

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Ipsaro, J.J., Huang, L. and Mondragon, A. Structures of the spectrin-ankyrin interaction binding domains. Blood 113 (2009) 5385–5393.

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Ipsaro, J.J. and Mondragon, A. Structural basis for spectrin recognition by ankyrin. Blood 115 (2010) 4093–4101.

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Pazdzior, G., Chorzalska, A., Czogalla, A., Borowik, T., Sikorski, A.F. and Langner, M. Fluorescence approach to evaluating conformational changes upon binding of beta-spectrin ankyrin-binding domain mutants with the lipid bilayer. Gen. Physiol. Biophys. 28 (2009) 283–293.

    PubMed  CAS  Google Scholar 

  133. Grum, V.L., Li, D., MacDonald, R.I. and Mondragon, A. Structures of two repeats of spectrin suggest models of flexibility. Cell 98 (1999) 523–535.

    PubMed  CAS  Google Scholar 

  134. Chorzalska, A., Lach, A., Borowik, T., Wolny, M., Hryniewicz-Jankowska, A., Kolondra, A., Langner, M. and Sikorski, A.F. The effect of the lipidbinding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures. Cell. Mol. Biol. Lett. 15 (2010) 406–423.

    PubMed  CAS  Google Scholar 

  135. Drin, G. and Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett. 584 (2010) 1840–1847.

    PubMed  CAS  Google Scholar 

  136. Sikorski, A.F. and Jezierski, A. Influence of spectrin on the fluidity of erythrocyte membrane. Stud. Biophys. 113 (1986) 193–201.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Czogalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogusławska, D.M., Machnicka, B., Hryniewicz-Jankowska, A. et al. Spectrin and phospholipids — the current picture of their fascinating interplay. Cell Mol Biol Lett 19, 158–179 (2014). https://doi.org/10.2478/s11658-014-0185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0185-5

Keywords