- Short Communication
- Published:
Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts
Cellular & Molecular Biology Letters volume 19, pages 126–139 (2014)
Abstract
Periodontitis is an infectious disease caused by microorganisms present in dental bacterial plaque. Lipoteichoic acid (LTA) is a component of the external membrane of Gram-positive bacteria. It causes septic shock. Ingested flavonoids have been reported to directly affect the regulation of cyclooxygenase-2 (COX-2) expression induced by bacterial toxins. In this study, we examined the effects of four flavonoids (luteolin, fisetin, morin and myricetin) on the activation of ERK1/2, p38 and AKT, and on the synthesis of COX-2 in human gingival fibroblasts treated with LTA from Streptococcus sanguinis. We found that luteolin and myricetin blocked AKT and p38 activation and that myricetin blocked LTA-induced COX-2 expression. The results of our study are important for elucidating the mechanism of action of flavonoid regulation of inflammatory responses.
Abbreviations
- COX-2:
-
cyclooxygenase-2
- HGF:
-
human gingival fibroblasts
- LTA:
-
lipoteichoic acid
- MAPK:
-
mitogen-activated protein kinases
- PAMPS:
-
pathogenassociated molecular patterns
- SDS:
-
sodium dodecyl sulfate
- TLR:
-
Toll-like receptors
References
Gutiérrez-Venegas, G. and Cardoso-Jiménez, P. Lipoteichoic acid promotes accumulation of β-catenin via AKT in human gingival fibroblasts. Int. Immunopharmacol. 11 (2011) 1278–1284.
Gutiérrez-Venegas, G., Contreras-Marmolejo, L.A., Román-Alvárez, P. and Barajas-Torres, C. Aggregatibacter actinomicetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization. Cell Biol. Int. 32 (2008) 417–426.
Gutiérrez-Venegas, G. and Contreras-Sánchez, A. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts. Mol. Biol. Rep. 40 (2013) 477–485.
Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol. 79 (2008) 1585–1591.
Kinane, D.F. and Bartold, P. Clinical relevance of the host responses of periodontitis. Periodontol 2000 43 (2007) 278–293.
Takashiba, S., Takigawa, M., Takahashi, K., Myokai, F., Nishimura F., Chihatra, T., Kurihara, H., Nomura, Y and Murayama, Y. Interleukin-8 is a major neutrophil chemotactic factor derived from cultured human gingival fibroblasts stimulated with interleukin-1 beta or tumor necrosis factor alpha. Infect. Immun. 60 (1992) 5253–5258.
Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. Increase of CCL20 expression by human gingival fibroblasts upon stimulation with cytokines and bacterial endotoxin. Clin. Exp. Immunol. 142 (2005) 285–291.
Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. CXC chemokine ligand 16 in periodontal diseases: expression in diseased tissues and production by cytokine-stimulated human gingival fibroblasts. Clin. Exp. Immunol. 149 (2007) 146–154.
Hosokawa, I., Hosokawa, Y., Ozaki, K., Nakae, H. and Matsuo, T. Adrenomedullin suppresses tumour necrosis factor alpha-induced CXC chemokine ligand 10 production by human gingival fibroblasts. Clin. Exp. Immunol. 152 (2008) 568–575.
Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. CC chemokine ligand 17 in periodontal diseases: expression in diseased tissues and production by human gingival fibroblasts. J. Periodontal Res. 43 (2008) 471–477.
Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakae, H. and Matsuo, T. Cytokines differentially regulate CXCL10 production by interferon-gammastimulated or tumor necrosis factor-alpha-stimulated human gingival fibroblasts. J. Periodontal Res. 44 (2009) 225–231.
O’Dell, D.S. and Ebersole, J.L. Avidity of antibody responses to Actinobacillus actinomycetemcomitans in periodontitis. Clin. Exp. Immunol. 101 (1995) 295–301.
Fletcher, J.M., Nair, S.P., Ward, J.M., Henderson, B. and Wilson, M. Analysis of the effect of changing envioromental conditions on the expression patterns of exported surface-associated proteins of the oral pathogen Actinobacillus actinomycetemcomitans. Microb. Pathog. 30 (2001) 359–368.
Hajishengallis, G., Sojar, H., Genco, R.J. and DeNardin, E. Intracellular signaling and cytokine induction upon interactions of Porphyromonas gingivalis fimbriae with pattern-recognition receptors. Immunol. Invest. 33 (2004) 157–172.
Tietze, K., Dalpke, A., Morath, S., Mutters, R., Heeg, K. and Nonnenmacher, C. Differences in innate immune responses upon stimulation with Grampositive and Gram-negative bacteria. J. Periodontal Res. 41 (2006) 447–454.
Hurttia, H.M., Pelto, L.M. and Leino, L. Evidence of an association between functional abnormalities and defective diacylglycerol kinase activity in peripheral blood neutrophils fromo patients with localized juvenile periodontitis. J. Periodontal Res. 32 (1997) 401–407.
Milward, M.R., Chapple, I.L., Wright, H.J., Millard, J.L., Matthews, J.B. and Cooper, P.R. Differential activation of NF-kappaB and gene expression in oral epithelial cells by periodontal pathogens. Clin. Exp. Immunol. 148 (2007) 307–324.
Yamaguchi, T., Naruishi, K., Arai, H., Nishimura, F. and Takashiba, S. IL-6/sIL-6R enhances cathepsin B and L production via caveolin-1-mediated JNK-AP-1 pathway in human gingival fibroblasts. J. Cell Physiol. 217 (2008) 423–432.
Guan, S.M., Zhang, M., He, J.J. and Wu, J.Z. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells. Biochem. Biophys. Res. Commun. 386 (2009) 471–476.
Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R. and Kinae, N. Dietary intakes of flavonols, flacones and isoflavones by Japanese women and the inverse correlation between quercetina intake and plasma LDL colesterol concentration. J. Nutr. 130 (2000) 2243–2250.
Maher, P., Dargusch, R., Ehren, J.L., Okada, S., Sharma, K. and Schubert, D. Fisetin powers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS ONE 6 (2011) e21226.
Lee, S.E., Jeong, S.I., Yang, H., Park, C.S., Jin, Y.H. and Park, Y.S. Fisetin induces Nrf2-mediated HO-1 expression through PKC-d and p38 in human umbilical vein endotelial cells. J. Cell Biochem. 112 (2011) 2352–2360.
Khan, N, Asim, M., Afaq, E., Abu Zaid, M. and Mukhatai, H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic mude mice. Cancer Res. 68 (2008) 8555–8563.
Prasath, G.S. and Subramanian, S.P. Modulatory effects of fisetin a bioflavonoid on hyperglycemia by attenuating the key enzymes of carbohydrate metabolismo in hepatic and renal tissues in streptozotocininduced diabetic rats. Eur. J. Pharmacol. 668 (2011) 492–496.
Maher, P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr. 4 (2009) 297–307.
Kitagawa, S., Sakamoto, H. and Tano, H. Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin a. Chem. Pharm. Bull. 52 (2004) 999–1001.
Wu, T.W, Zeng, L.H. and Wu, K.P. Fung. Morin hydrate is a plant-derived and antioxidant-based hepatoprotector. Life Sci. 53 (1993) PL213–PL218.
Galvez, J., Coelho, G., Crespo, M.E., Cruz, T., Rodriguez-Cabezas, M.E., Concha, A., González, M. and Zarzuelo, A. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol. Ther. 15 (2001) 2027–2039.
Lee, K.M., Kang, N.J., Han, J.H., Lee, K.W. and Lee, H.J. Myricetin downregulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J. Agric. Food Chem. 55 (2007) 9678–9684.
Lee, K.W., Kang, N.J., Rogozin, E.A., Kim, H.G., Cho, Y.Y., Bode, A.M., Lee, H.J., Surh, Y.J., Bowden, G.T. and Dong, Z. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28 (2007) 1918–1927.
Kumamoto, T., Fujii M. and Hou, D.X. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett. 275 (2009) 17–26.
Kumamoto, T., Fujii, M. and Hou, D.X. AKT is a direct target for myricetin to inhibit cell transformation. Mol. Cell Biochem. 332 (2009) 33–41.
Kim, J.E, Kwon, J.Y., Lee, D.E., Kang, N.J., Heo, Y.S., Lee, K.W. and Lee, H.J. MKK4 is a novel target for the inhibition of tumor necrosis factor alpha-induced vascular endothelial growth factor expression by myricetin. Biochem. Pharmacol. 77 (2009) 412–421.
Jung, S.K, Lee, K.W., Byun, S., Kang, N.J., Lim, S.H., Heo, Y.S., Bode, A.M., Bowde, G.T., Lee H.J. and Dong, Z. Myricetin suppresses UVBinduced skin cancer by targeting Fyn. Cancer Res. 68 (2008) 6021–6029.
Qian, L.B., Wang, H.P., Chen, Y., Chen, F.X., Ma, Y.Y., Bruce, I.C. and Xia, Q. Luteolin reduces high glucose-mediated impairment of endotheliumdependent relaxation in rat aorta by reducing oxidative stress. Pharmacol. Res. 61 (2006) 281–287.
Horinaka, M., Yoshida, T., Shiraishi, T., Nakata, S., Wakada, M., Nakanishi, R., Nishino, H., Matsui, H. and Sakai, T. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24 (2005) 7180–7189.
Ueda, H., Yamazaki, C. and Yamazaki, M. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull 26 (2003) 560–563.
Ueda, H., Yamazaki, C. and Yamazaki, M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 25 (2002) 1197–1202.
Ueda, H., Yamazaki, C. and Yamazaki, M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla flutescens. Biol. Pharm. Bull. 25 (2002) 1197–11202.
Gutiérrez-Venegas, G., Kawasaki-Cárdenas, P., Arroyo-Cruz, S.R. and Maldonado-Frías, S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur. J. Pharmacol. 10 (2006) 95–105.
Chomczynski, P. and Sachii, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-cloroform extraction. Anal. Biochem. 162 (1987) 156–159.
Fort, P., Marty, L., Piechaczyk, M., el Sabrouty, S., Dani, C., Jeanteur, P. and Blanchard, J.M. Various rat adult tissues express only one major mRNA species from the glyceraldhyde-2-phosphatre-dehydrogenase multigenic family. Nucleic Acids Res. 13 (1985) 1431–1442.
Uehara, A., Sugawara, S., Tamai, R. and Takada, H. Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med. Microbiol. Immunol. 189 (2001) 185–192.
Pöllänen, M.T., Salonen, J.I., Grenier, D. and Uitto, V.J. Epithelial cell response to challenge of bacterial lipoteichoic acids and lipopolysaccharides in vitro. J. Med. Microbiol. 49 (2000) 245–252.
Liljeroos, M., Vuolteenaho, R., Morath, S., Hartung, T., Hallman, M. and Ojaniemi, M. Bruton’s tyrosine kinase together with PI 3-kinase are part of Toll-like receptor 2 multiprotein complex and mediate LTA induced Tolllike receptor 2 responses in macrophages. Cell Signal. 19 (2007) 625–633.
Lin, C.H., Kuan, I.H., Wang, C.H., Lee, H.M., Lee, W.S., Sheu, J.R., Hsiao, G., Wu, C.H. and Kuo, H.P. Lipoteichoic acid-induced cyclooxygenase-2 expression requires activations of p44/42 and p38 mitogen-activated protein kinase signal pathways. Eur. J. Pharmacol. 450 (2002) 1–9.
Chiang, L.L., Kuo, C.T., Wang, C.H., Chen, T.F., Ho, Y.S., Kuo, H.P. and Lin, C.H. Involvement of nuclear factor-kappaB in lipoteichoic acid-induced cyclooxygenase-2 expression in RAW 264.7 macrophages. J. Pharm. Pharmacol. 55 (2003) 115–123.
Gutiérrez-Venegas, G., Maldonado-Frías, S., Ontiveros-Granados, A. and Kawasaki-Cárdenas, P. Role of p38 in nitric oxide synthase and cyclooxygenase expression and nitric oxide and PGE2 synthesis in human gingival fibroblasts stimulated with lipopolysaccharides. Life Sci. 77 (2005) 60–73.
Takahama, U., Yamamoto, A., Hirota, S. and Oniki, T. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction. J. Agric. Food Chem. 51 (2003) 6014–6020.
Huang, G.C., Chow, J.M., Shen, S.C., Yang, L.Y., Lin, C.W. and Chen, Y.C. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages. Int. Immunopharmacol. 7 (2007) 1054–1063.
Chapekar, M.S., Zaremba, T.G., Kuester, R.K. and Hitchins, V.M. Synergistic induction of tumor necrosis factor alpha by bacterial lipopolysaccharide and lipoteichoic acid in combination with polytetrafluoroethylene particles in a murine macrophage cell line RAW 264.7. J. Biomed. Mater. Res. 31 (1996) 251–256.
Dahle, M.K., Øverland, G., Myhre, A.E., Stuestøl, J.F., Hartung, T., Krohn, C.D., Mathiesen, Ø., Wang, J.E. and Aasen, A.O. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect. Immun. 72 (2004) 5704–5711.
Bruserud, Ø., Wendelbo, Ø. and Paulsen, K. Lipoteichoic acid derived from Enterococcus faecalis modulates the functional characteristics of both normal peripheral blood leukocytes and native human acute myelogenous leukemia blasts. Eur. J. Haematol. 73 (2004) 340–350.
Lonchampt, M.O., Auguet, M., Delaflotte, S., Goulin-Schulz, J., Chabrier, P.E. and Braquet, P. Lipoteichoic acid: a new inducer of nitric oxide synthase. J. Cardiovasc. Pharmacol. 1 (1992) 20 Suppl 12, S145–147.
Chang, Y.C., Li, P.C., Chen, B.C., Chang, M.S., Wang, J.L., Chiu, W.T. and Lin, C.H. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK and nuclear factor-kappaB pathways. Cell Signal. 18 (2006) 1235–1243.
Gutiérrez-Venegas, G. and Bando-Campos, C.G. The flavonoids luteolin and quercetagetin inhibit lipoteichoic acid actions on H9c2 cardiomyocytes. Int. Immunopharmacol. 10 (2010) 1003–1009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gutiérrez-Venegas, G., Luna, O.A., Arreguín-Cano, J.A. et al. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts. Cell Mol Biol Lett 19, 126–139 (2014). https://doi.org/10.2478/s11658-014-0186-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11658-014-0186-4