Skip to main content

Gene expression profiles of various cytokines in mesenchymal stem cells derived from umbilical cord tissue and bone marrow following infection with human cytomegalovirus

Abstract

Mesenchymal stem cells (MSCs) have both multi-lineage differentiation potential and immunosuppressive properties, making them ideal candidates for regenerative medicine. However, their immunosuppressive properties potentially increase the risk of cancer progression and opportunistic infections. In this study, MSCs isolated from human umbilical cord blood (UCMSCs) and adult bone marrow (BMMSCs) were infected with human cytomegalovirus (HCMV). Cytopathic changes were observed 10 days post infection. PCR products amplified from genomic DNA and cDNA were used to confirm the HCMV infection of the UCMSCs and BMMSCs. Real-time PCR was conducted to quantify the expression of immunomodulatory molecules, including cytokines, chemokines, growth factors, adhesion molecules and cancer-related genes. Our results indicate high upregulation of the majority of these molecules, including many growth factors, tumor necrosis factor alpha, interleukin-8, interleukin-6 and interferon gamma. Adhesion molecules (VCAM-1, TCAM-1 and selectin-E) were downregulated in the infected UCMSCs and BMMSCs. Antibody chip array evaluation of cell culture media indicated that the growth factor secretion by UCMSCs and BMMSCs was greatly influenced (p < 0.001) by HCMV. The stimulation of MSCs with HCMV led to the activation of downstream signaling pathways, including pSTAT3 and Wnt2. Our results show that HCMV can significantly alter the functions of both UCMSCs and BMMSCs, although not in the same way or to the same extent. In both cases, there was an increase in the expression of proangiogenic factors in the microenvironment following HMCV infection. The discrepancy between the two cell types may be explained by their different developmental origin, although further analysis is necessary. Future studies should decipher the underlying mechanism by which HCMV controls MSCs, which may lead to the development of new therapeutic treatments.

Abbreviations

BMMSC:

bone marrow mesenchymal stem cells

HCMV:

human cytomegalovirus

IFN:

interferon

IL:

interleukins

MCP:

macrophage chemotaxis protein

MSC:

mesenchymal stem cells

TCAM:

testicular adhesion molecules

TGF:

transforming growth factor

TNF:

tumor necrosis factor

UCMSC:

umbilical cord mesenchymal stem cells

VCAM:

vascular adhesion molecules

References

  1. Bernardo, M.E., Locatelli, F. and Fibbe, W.E. Mesenchymal stromal cells. Ann. NY Acad. Sci. 1176 (2009) 101–117.

    PubMed  Article  CAS  Google Scholar 

  2. DiNicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D, Matteucci, P., Grisanti, S. and Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99 (2002) 3838–3843.

    Article  CAS  Google Scholar 

  3. Gebler, A., Zabel, O. and Seliger, B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 18 (2012) 128–134.

    PubMed  Article  CAS  Google Scholar 

  4. Nauta, A.J., Kruisselbrink, A.B., Lurvink, E., Willemze, R. and Fibbe, W.E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol. 177 (2006) 2080–2087.

    PubMed  CAS  Article  Google Scholar 

  5. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A.I., Zhao, R.C. and Shi, Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell. Stem Cell 2 (2008) 141–150.

    PubMed  Article  CAS  Google Scholar 

  6. English. K., Barry, F.P., Field-Corbett, C.P. and Mahon, B.P. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 110 (2007) 91–100.

    PubMed  Article  CAS  Google Scholar 

  7. Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P., Rouas-Freiss, N., Carosella, E.D., and Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3 + regulatory T cells. Stem Cells 26 (2006) 212–222.

    Article  CAS  Google Scholar 

  8. LeBlanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Lanino, E., Sundberg, B., Bernardo, M.E., Remeberger, M., Dini, G., Egeler, R.M., Baciqalupo, A., Fibbe, W. and Ringden, O. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371 (2008) 1579–1586.

    Article  CAS  Google Scholar 

  9. Kharaziha, P., Hellstrom, P.M., Noorinayer, B., Farzaneh, F., Aghajani, K., Jafari, F., Telkabadi, M., Atashi, A., Honardoost, M., Zali, M.R. and Soleimani, M. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur. J. Gastroenterol. Hepatol. 21 (2009) 1199–1205.

    PubMed  Article  CAS  Google Scholar 

  10. Goodrich, J.M., Bowden, R.A., Fisher, L., Keller, C., Schoch, G. and Meyers, J.D. Ganciclovir prophylaxis to prevent cytomegalovirus infection after allogenic marrow transplant. Ann. Intern. Med. 118 (1993) 173–178.

    PubMed  Article  CAS  Google Scholar 

  11. Shukla, D. and Spear, P.G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 108 (2001) 503–510.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  12. Jarvis, M.A. and Nelson, J.A. Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr. Opin. Microbiol. 4 (2002) 403–407.

    Article  Google Scholar 

  13. Michaelis, M., Doerr, H.W. and Cinatl, J. Oncomodulation by human cytomegalovirus: evidence becomes stronger. Med. Microbiol. Immunol. 198 (2009) 79–88.

    PubMed  Article  Google Scholar 

  14. Torsvik, A. and Bjerkvig, R. Mesenchymal stem cell signaling in cancer progression. Can. Treat Rev. 39 (2012) 180–188.

    Article  CAS  Google Scholar 

  15. Liu, S., Ginestier, C., Ou, S.J., Clouthier, S.G., Patel, S.H., Monville, F., Korkaya, H., Heath, A., Dutcher, J., Kleer, C.G., Jung, Y., Dontu, G., Taichman, R. and Wicha, M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71 (2011) 614–624.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  16. Ferrand, J., Noël, D., Lehours, P., Prochazkova-Carlotti, M., Chambonnier L., Ménard, A., Mégraud, F. and Varon, C. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 6 (2011) e19569.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  17. Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak, K., Tubo, R. and Weinberg, R.A. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 449 (2007) 557–563.

    PubMed  Article  CAS  Google Scholar 

  18. Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V. and Altaner, C. Tumor cell behavior modulation by mesenchymal stromal cells. Mol. Cancer 9 (2010) 129.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  19. Tang, J., Wang, J., Yang, J., Kong, X., Zheng, F., Guo, L., Zhang, L. and Huang, Y. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur. J. Cardiothoracic Surg. 36 (2009) 644–650.

    Article  Google Scholar 

  20. Dwyer, R.M., Potter-Beirne, S.M., Harrington, K.A., Lowery, A.J., Hennessy, E., Murphy, J.M., Barry, F.P., Brien, T. and Kerin, M.J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer Res. 13 (2007) 5020–5027.

    PubMed  Article  CAS  Google Scholar 

  21. Pinilla, S., Alt, E., Abdul-Khalek. F.J., Jotzu, C., Muehlberg. F., Beckmann, C. and Song, Y.H. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett. 284 (2009) 80–85.

    PubMed  Article  CAS  Google Scholar 

  22. Roorda, B., Elst, A.T., Boer, T.G., Kamps, W.A. and de-Bont, E.S. Mesenchymal stem cells contribute to tumor cell proliferation by direct cell-cell contact interactions. Cancer Invest. 28 (2010) 526–534.

    PubMed  Article  CAS  Google Scholar 

  23. Wang, W., Ping, Yu., Peng, Z., Shi, Y., Bu, H. and Zhang, L. The infection of human primary cells and cell lines by human cytomegalovirus: New tropism and new reservoirs for HCMV. Virus Res. 131 (2008) 160–169.

    PubMed  Article  CAS  Google Scholar 

  24. Fu, Y.S., Cheng, Y.C., Lin, M.Y., Cheng, H., Chu, P.M., Chou, S.C., Shih, Y.H., Ko, M.H. and Sung, M.S. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for parkinsonism. Stem Cells 24 (2006) 115–124.

    PubMed  Article  Google Scholar 

  25. Barry, F.P. and Murphy, J.M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell. Biol. 36 (2004) 568–584.

    PubMed  Article  CAS  Google Scholar 

  26. Yi, T., Lee, D.S., Jeon, M.S., Kwon, S.W. and Song, SU. Gene expression profile reveals that STAT2 is involved in the immunosuppressive function of human bone marrow-derived mesenchymal stem cells. Gene 497 (2012) 131–135.

    PubMed  Article  CAS  Google Scholar 

  27. Rubio, D., Garcia, S., Paz, M.F., De-laCueva, T., Lopez-Fernandez, L.A., Lloyd, A.C., Garcia-Castro, J. and Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. Plos One 1 (2008) 1–15.

    Google Scholar 

  28. Han, Z.P., Jing, Y.Y., Zhang, S.S., Liu, Y., Shi, Y. and Wei, L. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell Bioscience 2 (2012) 8–12.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. Djouad, F., Charbonnier, L.M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C. and Noel, D. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25 (2007) 2025–2032.

    PubMed  Article  CAS  Google Scholar 

  30. Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., Galun, E. and Rachmilewitz, J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105 (2005) 2214–2219.

    PubMed  Article  CAS  Google Scholar 

  31. Hoogduijn, M.J., Popp, F., Verbeek, R., Masoodi, M., Nicolaou, A., Baan, C. and Dahlke, M.H. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int. Immunopharmacol. 10 (2010) 1496–1500.

    PubMed  Article  CAS  Google Scholar 

  32. Boehme, K.W., Guettero, M.G. and Compton, T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177 (2006) 7094–7102.

    PubMed  CAS  Article  Google Scholar 

  33. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. and Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15 (2008) 730–738.

    PubMed  Article  CAS  Google Scholar 

  34. Boomsma, R.A. and Geenen, D.L. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. Plos One 7 (2012) 1–8.

    Article  CAS  Google Scholar 

  35. Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z.R., Roberts, A.I., Shi, S., Le, A.D. and Shi, Y. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 19 (2012) 1505–1513.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  36. Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A. and Santarlasci, V. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24 (2006) 386–398.

    PubMed  Article  CAS  Google Scholar 

  37. Niemand, C., Nimmesgern, A., Haan, S., Fischer, P., Schaper, F., Rossaint, R., Heinrich, P.C. and Müller-Newen, G. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J. Immunol. 170 (2003) 3263–3272.

    PubMed  CAS  Article  Google Scholar 

  38. Mark, P. and Paul, P. Wnt signaling in oncogenesis and embryogenesis -a look outside the nucleus. Science 287 (2000) 1606–1609.

    Article  Google Scholar 

  39. Gartel, A.L. and Tyner, A.L. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Can. Ther. 1 (2002) 639–649.

    CAS  Google Scholar 

  40. Saika, S., Okada, Y., Miyamoto, T., Yamanaka, O., Ohnishi, Y., Ooshima, A., Liu, C.Y, Weng, D. and Kao, W.W. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest. Ophthalmol. Vis. Sci. 45 (2004) 100–109.

    PubMed  Article  Google Scholar 

  41. Bouma, G., Doffinger, R., Patel, S.Y., Peskett, E., Sinclair, J.C., Barcenas-Morales, G., Cerron-Gutierrez, L., Kumararatne, D.S., Davies, E.G., Thrasher, A.J. and Burns, S.O. Impaired neutrophil migration and phagocytosis in IRAK-4 deficiency. Brit. J. Haematol. 147 (2009) 153–156.

    Article  CAS  Google Scholar 

  42. Chen, W., Liu, J., Manuchehrabadi, N., Weir, M.D., Zhu, Z. and Xu, H.H. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials 34 (2013) 9917–9925.

    PubMed  Article  CAS  Google Scholar 

  43. Baksh, D., Yao, R. and Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25 (2007) 1384–1392.

    PubMed  Article  CAS  Google Scholar 

  44. Fong, C.Y., Chak. L.L., Biswas, A., Tan, J.H., Gauthaman, K., Chan, W.K. and Bongso, A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 7 (2011) 1–16.

    PubMed  Article  CAS  Google Scholar 

  45. Huang, Y.C., Paroline. O., LaRocca, G. and Deng, L. Umbilical cord versus bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 21 (2012) 2900–2903.

    PubMed  Article  CAS  Google Scholar 

  46. Kang, B.J., Ryu, H.H., Park, S.S., Koyama, Y., Kikuchi, M., Woo, H.M., Kim, W.H. and Kweon, O.K. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow. J. Vet. Sci. 13 (2012) 299–310.

    PubMed Central  PubMed  Article  Google Scholar 

  47. Miranda, H.C., Herai, R.H., Thomé, C.H., Gomes, G.G., Panepucci, R.A., Orellana, M.D., Covas, D.T., Muotri, A.R., Greene, L.J. and Faça, V.M. A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics 12 (2012) 2607–2617.

    PubMed  Article  CAS  Google Scholar 

  48. Hsieh, J.Y., Wang, H.W., Chang, S.J., Liao, K.H., Lee, I.H., Lin, W.S., Wu, C.H., Lin, W.Y. and Cheng, S.M. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. Plos One 8 (2013) e72604.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Q., Yu, P., Wang, W. et al. Gene expression profiles of various cytokines in mesenchymal stem cells derived from umbilical cord tissue and bone marrow following infection with human cytomegalovirus. Cell Mol Biol Lett 19, 140–157 (2014). https://doi.org/10.2478/s11658-014-0187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0187-3

Keywords

  • Mesenchymal stem cells
  • Bone marrow
  • Umbilical cord
  • Human cytomegalovirus
  • In vitro infection
  • Cytopathic change
  • Immunomodulatory molecules
  • Gene expression detection
  • Antibody chip
  • Kinase signal pathway