Skip to main content

Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering


Degradable aliphatic polyesters such as polylactides, polyglycolides and their copolymers are used in several biomedical and pharmaceutical applications. We analyzed the influence of poly(L-lactide-co-glycolide) (PLGA) thin films on the adhesion, proliferation, motility and differentiation of primary human skin keratinocytes and fibroblasts in the context of their potential use as cell carriers for skin tissue engineering. We did not observe visible differences in the morphology, focal contact appearance, or actin cytoskeleton organization of skin cells cultured on PLGA films compared to those cultured under control conditions. Moreover, we did not detect biologically significant differences in proliferative activity, migration parameters, level of differentiation, or expression of vinculin when the cells were cultured on PLGA films and tissue culture polystyrene. Our results indicate that PLGA films do not affect the basic functions of primary human skin keratinocytes and fibroblasts and thus show acceptable biocompatibility in vitro, paving the way for their use as biomaterials for skin tissue engineering.



coefficient of cell movement efficiency




tissue culture polystyrene


total length of cell displacement


velocity of cell movement


  1. 1.

    Bannasch, H., Fohn, M., Unterberg, T., Bach, A.D., Weyand, B. and Stark, G.B. Skin tissue engineering. Clin. Plast. Surg. 30 (2003) 573–579. DOI: 10.1016/S0094-1298(03)00075-0.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Bello, Y.M., Falabella, A.F. and Eaglstein, W.H. Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2 (2001) 305–313. DOI: 10.2165/00128071-200102050-00005.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kirsner, R.S., Falanga, V. and Eaglstein, W.H. The development of bioengineered skin. Trends Biotechnol. 16 (1998) 246–249. DOI: 10.1016/S0167-7799(98)01196-2.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Boyce, S.T., Goretsku, M.J., Greenhalgh, D.G., Kagan, R.J., Rieman, M.T. and Warden, G.D. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 222 (1995) 743–752. DOI: 10.1097/00000658-199512000-00008.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Boyce, S.T., Kagan, R.J., Yakuboff, K.P., Meyer, N.A., Rieman, M.T., Greenhalgh, D.G. and Warden, G.D. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 235 (2002) 269–279. DOI: 10.1097/00000658-200202000-00016.

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Voigt, M., Schauer, M., Schaefer, D.J., Andree, C., Horch, R. and Stark, G.B. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng. 5 (1999) 563–572. DOI: 10.1089/ten.1999.5.563.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Woodley, D.T., Peterson, H.D., Herzog, S.R., Stricklin, G.P., Burgeson, R.E., Briggaman, R.A., Cronce, D.J. and O’Keefe, E.J. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 259 (1988) 2566–2571. DOI: 10.1001/jama.1988.03720170042031.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Herndon, D.N. and Rutan, R.L. Comparison of cultured epidermal autograft and massive excision with serial autografting plus homograft overlay. J. Burn Care Rehabil. 13 (1992) 154–157. DOI: 10.1097/00004630-199201000-00034.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Drukala, J., Bandura, L., Cieslik, K. and Korohoda, W. Locomotion of human skin keratinocytes on polystyrene, fibrin, and collagen substrata and its modification by cell-to-cell contacts. Cell Transplant. 10 (2001) 765–771. DOI: 10.3727/000000001783986251.

    CAS  PubMed  Google Scholar 

  10. 10.

    Yannas, I.V., Burke, J.F. and Gordon, P.L. Design of an artificial skin II. Control of chemical composition. J. Biomed. Mater. Res. 14 (1980) 107–131. DOI: 10.1002/jbm.820140203.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Heimbach, D., Luterman, A. and Burke, J.F. Artificial dermis for major burns; a multi-center randomized clinical trial. Ann. Surg. 208 (1988) 313–320. DOI: 10.1097/00000658-198809000-00008.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Eaglstein, W.H., Iriondo, M. and Laszlo, K. A composite skin substitute (Graftskin) for surgical wounds: a clinical experience. Dermatol. Surg. 21 (1995) 839–843. DOI: 10.1111/j.1524-4725.1995.tb00709.x.

    CAS  PubMed  Google Scholar 

  13. 13.

    Noordenbos, J., Dore, C. and Hansbrough, J.F. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J. Burn Care Rehabil. 20 (1999) 275–281. DOI: 10.1097/00004630-199907000-00002.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Stephens, R., Wilson, K. and Silverstein, P. A premature infant with skin injury successfully treated with bilayered cell matrix. Ostomy/Wound Manage 48 (2002) 34–38.

    Google Scholar 

  15. 15.

    Gopferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17 (1996) 103–114. DOI: 10.1016/0142-9612(96)85755-3.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Ignatius, A.A. and Claes, L.E. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 17 (1996) 831–839. DOI: 10.1016/0142-9612(96)81421-9.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Mendes, S.C., Reis, R.L., Bovell, Y.P., Cunha, A.M., van Blitterswijk, C.A. and de Bruijn, J.D. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22 (2001) 2057–2064. DOI: 10.1016/S0142-9612(00)00395-1.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Porte, T., Faschingbauer, M., Seide, K. and Jurgens, C. Topkin — eine resorbierbare folie aus lactid-caprolacton. Trauma Berufskrankh. 5 (2003) 443–448. DOI: 10.1007/s10039-003-0811-3.

    Article  Google Scholar 

  19. 19.

    Jurgens, C., Schulz, A.P., Porte, T., Faschingbauer, M. and Seide, K. Biodegradable films in trauma and orthopedic surgery. Eur. J. Trauma 32 (2006) 160–171. DOI: 10.1007/s00068-006-6051-z.

    Article  Google Scholar 

  20. 20.

    Uhlig, C., Rapp, M., Hartmann, B., Hierlemann, H., Planck, H. and Dittel, K.K. Suprathel — an innovative, resorbable skin substitute for the treatment of burn victims. Burns 33 (2007) 221–229. DOI: 10.1016/j.burns.2006.04.024.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Selig, H.F., Keck, M., Lumenta, D.B., Mittlbock, M. and Kamolz, L.P. The use of a polylactide-based copolymer as a temporary skin substitute in deep dermal burns: 1-year follow-up results of a prospective clinical noninferiority trial. Wound Repair Regen. 21 (2013) 402–409. DOI: 10.1111/wrr.12050.

    PubMed  Article  Google Scholar 

  22. 22.

    Keck, M., Selig, H.F., Lumenta, D.B., Kamolz, L.P., Mittlbock, M. and Frey, M. The use of Suprathel in deep dermal burns: first results of a prospective study. Burns 38 (2012) 388–395. DOI: 10.1016/j.burns.2011.09.026.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Lysaght, M.J. and Hazlehurst, A.L. Tissue engineering: The end of the beginning. Tissue Eng. 10 (2004) 309–320. DOI: 10.1089/107632704322791943.

    PubMed  Article  Google Scholar 

  24. 24.

    Pamula, E., Bacakova, L., Filova, E., Buczynska, J., Dobrzynski, P., Noskova, L. and Grausova, L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 19 (2008) 425–435. DOI: 10.1007/s10856-007-3001-1.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Pamula, E., Filova, E., Bacakova, L., Lisa, V. and Adamczyk, D. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J. Biomed. Mater. Res. A 89 (2009) 432–443. DOI: 10.1002/jbm.a.31977.

    PubMed  Article  Google Scholar 

  26. 26.

    Scislowska-Czarnecka, A., Pamula, E. and Kolaczkowska, E. Impact of poly(L-lactide) versus poly(L-lactide-co-trimethylene carbonate) on biological characteristics of fibroblasts and osteoblasts. Folia Biol. 61 (2013) 11–24. DOI: 10.3409/fb61_1-2.11.

    CAS  Article  Google Scholar 

  27. 27.

    Scislowska-Czarnecka, A., Pamula, E. and Kolaczkowska, E. Biocompatibility evaluation of glycolide-containing polyesters in contact with osteoblasts and fibroblasts. J. Apply. Polymer Sci. 127 (2013) 3256–3268. DOI: 10.1002/app.37762.

    CAS  Article  Google Scholar 

  28. 28.

    Dobrzynski, P., Kasperczyk, J., Janeczek, H. and Bero, M. Synthesis of biodegradable copolymers with the use of low toxic Zirconium compounds. 1. Copolymerization of glycolide with L-lactide initiated by Zr(Acac)4. Macromolecules 34 (2001) 5090–5098. DOI: 10.1021/ma0018143.

    CAS  Article  Google Scholar 

  29. 29.

    Pamula, E., Dobrzynski, P., Szot, B., Kretek, M., Krawciow, J., Plytycz, B. and Chadzinska, M. Cytocompatibility of aliphatic polyesters — in vitro study on fibroblasts and macrophages. J. Biomed. Mater. Res. A 87 (2008) 524–535. DOI: 10.1002/jbm.a.31802.

    PubMed  Article  Google Scholar 

  30. 30.

    Tanzi, M.C., Verderio, M.G., Lampugnani, M.G., Resnati, M., Dejana, E. and Sturani E. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J. Mater. Sci. 5 (1994) 393–396. DOI: 10.1007/BF00058971.

    CAS  Google Scholar 

  31. 31.

    Douglas, T., Pamula, E., Hauk, D., Wiltfang, J., Sivananthan, S., Sherry, E. and Warnke, P.H. Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J. Mater. Sci. Mater. Med. 20 (2009) 1909–1915. DOI: 10.1007/s10856-009-3756-7.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Pamula, E. and Menaszek, E. In vitro and in vivo degradation of poly(Llactide-co-glycolide) films and scaffolds. J. Mater. Sci. Mater. Med. 19 (2008) 2063–2070. DOI: 10.1007/s10856-007-3292-2.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Miekus, K. and Madeja Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Biol. Lett. 12 (2007) 348–361. DOI: 10.2478/s11658-007-0007-0.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zeiger, A.S., Hinton, B. and Van Vliet, K.J. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater. 9 (2013) 7354–7361. DOI: 10.1016/j.actbio.2013.02.035.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Adamczak, M., Scislowska-Czarnecka, A., Genet, M.J., Dupont-Gillain C.C. and Pamula E. Surface characterization, collagen adsorption and cell behaviour on poly(L-lactide-co-glycolide). Acta Bioeng. Biomech. 13 (2011) 63–75.

    PubMed  Google Scholar 

  36. 36.

    Kumbar, S.G., Nukavarapu, S.P., James, R., Nair, L.S. and Laurencin, C.T. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29 (2008) 4100–4107. DOI: 10.1016/j.biomaterials.2008.06.028.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Scislowska-Czarnecka, A., Pamula, E., Tlalka, A. and Kolaczkowska, E. Effects of aliphatic polyesters on activation of the immune system: Studies on macrophages. J. Biomater. Sci. Polymer Ed. 23 (2012) 715–738. DOI: 10.1163/092050611X559421.

    CAS  Article  Google Scholar 

  38. 38.

    Garric, X., Moles, J.P., Garreau, H., Braud, C., Guilhou, J.J. and Vert, M. Growth of various cell types in the presence of lactic and glycolic acids: the adverse effect of glycolic acid released from PLAGA copolymer on keratinocyte proliferation. J. Biomater. Sci. Polymer Ed. 13 (2002) 1189–1201. DOI: 10.1163/156856202320892957.

    CAS  Article  Google Scholar 

  39. 39.

    Biela, S.A., Su, Y., Spatz, J.P. and Kemkemer R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in thenano-micro range. Acta Biomater. 5 (2009) 2460–2466. DOI: 10.1016/j.actbio.2009.04.003.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Hoffman-Kim D., Mitchel J.A. and Bellamkonda R.V. Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12 (2010) 203–231. DOI: 10.1146/annurev-bioeng-070909-105351.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Fuchs, E. and Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19 (1980) 1033–1042. DOI: 10.1016/0092-8674(80)90094-X.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. and Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31 (1982) 11–24. DOI: 10.1016/0092-8674(82)90400-7.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Watt, F. Involucrin and other markers of keratinocyte terminal differentiation. J. Invest. Dermatol. 81 (1983) 100–103. DOI: 10.1111/1523-1747.ep12540786.

    Article  Google Scholar 

  44. 44.

    Blackwood, K.A., McKean, R., Canton, I., Freeman, C.O., Franklin, K.L., Cole, D., Brook, I., Farthing, P., Rimmer, S., Haycock, J.W., Ryan, A.J. and MacNeil, S. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials 29 (2008) 3091–3104. DOI: 10.1016/j.biomaterials.2008.03.037.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Justyna Drukala.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuber, A., Borowczyk, J., Zimolag, E. et al. Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering. Cell Mol Biol Lett 19, 297–314 (2014).

Download citation


  • Burns
  • Skin regeneration
  • Wound healing
  • Keratinocytes
  • Fibroblasts
  • Biomaterials
  • PLGA
  • Tissue engineering