Skip to main content

MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats


Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.



3′ untranslated region


α-smooth muscle actin


antisense RNA oligonucleotide


bone morphogenetic protein 7


ethylene diamine tetraacetic acid


epithelial-mesenchymal transition


endstage renal disease


glucose degradation products


horseradish peroxidase




peritoneal dialysis


peritoneal dialysis fluids


peritoneal membrane


peritoneal mesothelial cells


rat peritoneal mesothelial cells


renal replacement therapy


  1. 1.

    Williams, J.D., Craig, K.J., Topley, N., Von Ruhland, C., Fallon, M., Newman, G.R., Mackenzie, R.K. and Williams, G.T. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13 (2002) 470–479.

    PubMed  Google Scholar 

  2. 2.

    Plum, J., Hermann, S., Fusshöller, A., Schoenicke, G., Donner, A., Röhrborn, A. and Grabensee, B. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney. Int. Suppl 78 (2001) S42–S47.

    Article  Google Scholar 

  3. 3.

    Kihm, L.P., Wibisono, D., Müller-Krebs, S., Pfisterer, F., Morath, C., Gross, M.L., Morcos, M., Seregin, Y., Bierhaus, A., Nawroth, P.P., Zeier, M. and Schwenger, V. RAGE expression in the human peritoneal membrane. Nephrol. Dial. Transplant. 23 (2008) 3302–3306.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Hirahara, I., Kusano, E., Yanagiba, S., Miyata, Y., Ando, Y., Muto, S. and Asano, Y. Peritoneal injury by methylglyoxal in peritoneal dialysis. Perit. Dial. Int. 26 (2006) 380–392.

    CAS  PubMed  Google Scholar 

  5. 5.

    Oh, E.J., Ryu, H.M., Choi, S.Y., Yook, J.M., Kim, C.D., Park, S.H., Chung, H.Y., Kim, I.S., Yu, M.A., Kang, D.H. and Kim, Y.L. Impact of low glucose degradation product bicarbonate/lactate-buffered dialysis solution on the epithelial-mesenchymal transition of peritoneum. Am. J. Nephrol. 31 (2010) 58–67.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Li, Y., Yang, J., Dai, C., Wu, C. and Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112 (2003) 503–516.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Yáñez-Mó, M., Lara-Pezzi, E., Selgas, R., Ramírez-Huesca, M., Domínguez-Jiménez, C., Jiménez-Heffernan, J.A., Aguilera, A., Sánchez-Tomero, J.A., Bajo, M.A., Alvarez, V., Castro, M.A., del Peso, G., Cirujeda, A., Gamallo, C., Sánchez-Madrid, F. and López-Cabrera, M. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 48 (2003) 403–413.

    Article  Google Scholar 

  8. 8.

    Yang, A.H., Chen, J.Y. and Lin, J.K. Myofibroblastic conversion of mesothelial cells. Kidney Int. 63 (2003) 1530–1539.

    PubMed  Article  Google Scholar 

  9. 9.

    Pillai, R.S., Bhattacharyya, S.N. and Filipowicz, W. Repression of protein synthesis by miRNAs: How many mechanisms? Trends Cell. Biol. 17 (2007) 118–126.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Khvorova, A., Reynolds, A. and Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115 (2003) 209–216.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Zhang, K., Zhang, H., Zhou, X., Tang, W.B., Xiao, L., Liu, Y.H., Liu, H., Peng, Y.M., Sun, L. and Liu, F.Y. miRNA589 regulates epithelialmesenchymal transition in human peritoneal mesothelial cells. J. Biomed. Biotechnol. 2012; 2012: 673096. doi: 10.1155/2012/673096. Epub 2012 Oct 3

    PubMed Central  PubMed  Google Scholar 

  12. 12.

    Tang, O., Chen, X.M., Shen, S., Hahn, M. and Pollock, C.A. miRNA-200b represses transforming growth factor beta1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am. J. Physiol. Renal. Physiol. 304 (2013) F1266–F1273.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hirahara, I., Ishibashi, Y., Kaname, S., Kusano, E. and Fujita, T. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol. Dial. Transplant. 24 (2009) 437–447.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Yang, X., Ye, R., Kong, Q., Yang, Q., Dong, X. and Yu, X. CD40 is expressed on rat peritoneal mesothelial cells and upregulates ICAM-1 production. Nephrol. Dial. Transplant. 19 (2004) 1378–1784.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Grassmann, A., Gioberge, S., Moeller, S. and Brown G. ESRD patients in 2004: Global overview of patient numbers, treatment modalities and associated trends. Nephrol. Dial. Transplant. 20 (2005) 2587–2593.

    PubMed  Article  Google Scholar 

  16. 16.

    Loureiro, J., Schilte, M., Aguilera, A., Albar-Vizcaíno, P., Ramírez-Huesca, M., Pérez-Lozano, M.L., González-Mateo, G., Aroeira, L.S., Selgas, R., Mendoza, L., Ortiz, A., Ruíz-Ortega, M., van den Born, J., Beelen, R.H. and López-Cabrera, M. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol. Dial. Transplant. 25 (2010) 1098–1108.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Slaby, O., Svoboda, M., Michalek, J. and Vyzula, R. Micrornas in colorectal cancer: Translation of molecular biology into clinical application. Mol. Cancer 8 (2009) 102.

    PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Acloque, H., Thiery, J.P. and Nieto, M.A. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep. 9 (2008) 322–326.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Korpal, M. and Kang, Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5 (2008) 115–119.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Long, J., Wang, Y., Wang, W., Chang, B.H. and Danesh, F.R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286 (2011) 11837–11848.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Gebeshuber, C.A., Kornauth, C., Dong, L., Sierig, R., Seibler, J., Reiss, M., Tauber, S., Bilban, M., Wang, S., Kain, R., Böhmig, G.A., Moeller, M.J., Gröne, H.J., Englert, C., Martinez, J. and Kerjaschki, D. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19 (2013) 481–487.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Kalluri, R. and Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112 (2003) 1776–1784.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Wang, S., Chen, Q., Simon, T.C., Strebeck, F., Chaudhary, L., Morrissey, J., Liapis, H., Klahr, S. and Hruska, K.A. Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int. 63 (2003) 2037–2049.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D. Strutz, F., and Kalluri, R. BMP-7 counteracts TGF-beta1-induced epithelial-tomesenchymal transition and reverses chronic renal injury. Nat. Med. 9 (2003) 964–968.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Yu, M.A., Shin, K.S., Kim, J.H., Kim, Y.I., Chung, S.S., Park, S.H., Kim, Y.L. and Kang, D.H. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J. Am. Soc. Nephrol. 20 (2009) 567–581.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Margetts, P.J. and Bonniaud, P. Basic mechanisms and clinical implications of peritoneal fibrosis. Perit. Dial. Int. 23 (2003) 530–541.

    CAS  PubMed  Google Scholar 

  27. 27.

    Zhou, Q., Yang, M., Lan, H. and Yu, X. miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am. J. Pathol. 183 (2013) 808–819.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Margetts, P.J., Kolb, M., Galt, T., Hoff, C.M., Shockley, T.R. and Gauldie, J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12 (2001) 2029–2039.

    CAS  PubMed  Google Scholar 

  29. 29.

    Vesuna, F., van Diest, P., Chen, J.H. and Raman, V. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem. Biophys. Res. Commun. 367 (2008) 235–241.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Barrallo-Gimeno, A. and Nieto, M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132 (2005) 3151–3161.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Da Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, N. & Tian, D. MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats. Cell Mol Biol Lett 19, 315–329 (2014).

Download citation


  • Methylglyoxal
  • miR-30b
  • Epithelial-mesenchymal transition
  • Peritoneal dialysis
  • Rats
  • Peritoneal fibrosis
  • MicroRNA
  • Bone morphogenetic protein 7
  • E-cadherin
  • Peritoneal membrane