Skip to main content

Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β

Abstract

Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

Abbreviations

CBR:

cannabinoid receptors

CB1R:

type 1 CBR

CB2R:

type 2 CBR

GIPs:

GPCR-interacting proteins

GPCR:

G protein-coupled receptor

GPR55:

G protein-coupled receptor 55

GST-14-3-3β:

glutathione-S-transferase-tagged 14-3-3β

HA-CB1R:

3xHA-tagged CB1R

IL3:

intracellular loop 3 domain

PBS:

phosphate-buffered saline

PI:

propidium iodide

PPAR-γ:

peroxisome proliferator-activated receptor-γ

SDS:

sodium dodecyl sulfate

References

  1. Aguado, T., Romero, E., Monory, K., Palazuelos, J., Sendtner, M., Marsicano, G., Lutz, B., Guzmán, M. and Galve-Roperh, I. The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesis. J. Biol. Chem. 282 (2007) 23892–23898.

    PubMed  CAS  Article  Google Scholar 

  2. Pan, H.L., Wu, Z.Z., Zhou, H.Y., Chen, S.R., Zhang, H.M. and Li, D.P. Modulation of pain transmission by G protein-coupled receptors. Pharmacol. Ther. 117 (2008) 141–161.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. Won, J.H., Park, J.S., Ju, H.H., Kim, S., Suh-Kim, H. and Ghil, S.H. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions. Cell. Signal. 20 (2008) 884–891.

    PubMed  CAS  Article  Google Scholar 

  4. Park, J.M., Xian, X.S., Choi, M.G., Park, H., Cho, Y.K., Lee, I.S., Kim, S.W. and Chung, I.S. Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. J. Cell. Biochem. 112 (2011) 1192–1205.

    PubMed  CAS  Article  Google Scholar 

  5. Hernán Pérez de la Ossa, D., Lorente, M., Gil-Alegre, M.E., Torres, S., García-Taboada, E., Aberturas Mdel, R., Molpeceres, J., Velasco, G. and Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One 8 (2013) e54795.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Nabissi, M., Morelli, M.B., Santoni, M. and Santoni, G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34 (2013) 48–57.

    PubMed  CAS  Article  Google Scholar 

  7. Morelli, M.B., Offidani, M., Alesiani, F., Discepoli, G., Liberati, S., Olivieri, A., Santoni, M., Santoni, G., Leoni, P. and Nabissi, M. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2. Int. J. Cancer 134 (2014) 2534–2546.

    PubMed  CAS  Article  Google Scholar 

  8. Rocha, F.C., Dos Santos Junior, J.G., Stefano, S.C. and da Silveira, D.X. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J. Neurooncol. 116 (2014) 11–24.

    PubMed  CAS  Article  Google Scholar 

  9. Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346 (1990) 561–564.

    PubMed  CAS  Article  Google Scholar 

  10. Kaminski, N.E., Abood, M.E., Kessler, F.K., Martin, B.R. and Schatz, A.R. Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol. Pharmacol. 42 (1992) 736–742.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Munro, S., Thomas, K.L. and Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365 (1993) 61–65.

    PubMed  CAS  Article  Google Scholar 

  12. Bouaboula, M., Poinot-Chazel, C., Marchand, J., Canat, X., Bourrié, B., Rinaldi-Carmona, M., Calandra, B., Le Fur, G. and Casellas, P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur. J. Biochem. 237 (1996) 704–711.

    PubMed  CAS  Article  Google Scholar 

  13. Starowicz, K., Nigam, S. and Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114 (2007) 13–33.

    PubMed  CAS  Article  Google Scholar 

  14. Gasperi, V., Fezza, F., Pasquariello, N., Bari, M., Oddi, S., Agro, A.F. and Maccarrone, M. Endocannabinoids in adipocytes during differentiation and their role in glucose uptake. Cell. Mol. Life Sci. 64 (2007) 219–229.

    PubMed  CAS  Article  Google Scholar 

  15. Lauckner, J.E., Jensen, J.B., Chen, H.Y., Lu, H.C., Hille, B. and Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA 105 (2008) 2699–2704.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  16. O’Sullivan, S.E. and Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215 (2010) 611–616.

    PubMed  Article  Google Scholar 

  17. Simcocks, A.C., O’Keefe, L., Jenkin, K.A., Mathai, M.L., Hryciw, D.H. and McAinch, A.J. A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov. Today (2013) in press. DOI: 10.1016/j.drudis.2013.12.009.

    Google Scholar 

  18. Bockaert, J., Fagni, L., Dumuis, A. and Marin, P. GPCR interacting proteins (GIP). Pharmacol. Ther. 103 (2004) 203–221.

    PubMed  CAS  Article  Google Scholar 

  19. Bockaert, J., Perroy, J., Bécamel, C., Marin, P. and Fagni, L. GPCR interacting proteins (GIPs) in the nervous system: Roles in physiology and pathologies. Annu. Rev. Pharmacol. Toxicol. 50 (2010) 89–109.

    PubMed  CAS  Article  Google Scholar 

  20. Maurice, P., Guillaume, J.L., Benleulmi-Chaachoua, A., Daulat, A.M., Kamal, M. and Jockers, R. GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol. 62 (2011) 349–380.

    PubMed  CAS  Article  Google Scholar 

  21. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344 (1990) 503–508.

    PubMed  CAS  Article  Google Scholar 

  22. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and Piwnica-Worms, H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277 (1997) 1501–1505.

    PubMed  CAS  Article  Google Scholar 

  23. Jin, P., Gu, Y. and Morgan, D.O. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell. Biol. 134 (1996) 963–970.

    PubMed  CAS  Article  Google Scholar 

  24. Sluchanko, N.N. and Gusev, N.B. Oligomeric structure of 14-3-3 protein: what do we know about monomers? FEBS Lett. 586 (2012) 4249–4256.

    PubMed  CAS  Article  Google Scholar 

  25. Wang, Y., Jacobs, C., Hook, K.E., Duan, H., Booher, R.N. and Sun, Y. Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell population. Cell Growth Differ. 11 (2000) 211–219.

    PubMed  CAS  Google Scholar 

  26. Shao, H. and Andres, D.A. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J. Biol. Chem. 275 (2000) 26914–26924.

    PubMed  CAS  Google Scholar 

  27. Graves, P.R., Lovly, C.M., Uy, G.L. and Piwnica-Worms, H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20 (2001) 1839–1851.

    PubMed  CAS  Article  Google Scholar 

  28. Lorenz, V.N., Schön, M.P. and Seitz, C.S. c-Rel downregulation affects cell cycle progression of human keratinocytes. J. Invest. Dermatol. 134 (2014) 415–422.

    PubMed  CAS  Article  Google Scholar 

  29. Shen, J., Liu, X., Yu, W.M., Liu, J., Nibbelink, M.G., Guo, C., Finkel, T. and Qu, C.K. A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. Mol. Cell. Biol. 31 (2011) 4902–4916.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  30. Parker, L.L., Sylvestre, P.J., Byrnes, M.J. 3rd, Liu, F. and Piwnica-Worms, H. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc. Natl. Acad. Sci. USA 92 (1995) 9638–9642.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  31. Kumagai, A., Yakowec, P.S. and Dunphy, W.G. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell. 9 (1998) 345–354.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  32. Blasina, A., de Weyer, I.V., Laus, M.C., Luyten, W.H., Parker, A.E. and McGowan, C.H. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9 (1999) 1–10.

    PubMed  CAS  Article  Google Scholar 

  33. Parker, L.L. and Piwnica-Worms, H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257 (1992) 1955–1957.

    PubMed  CAS  Article  Google Scholar 

  34. McGowan, C.H. and Russell, P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12 (1993) 75–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Mils, V., Baldin, V., Goubin, F., Pinta, I., Papin, C., Waye, M., Eychene, A. and Ducommun, B. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 19 (2000) 1257–1265.

    PubMed  CAS  Article  Google Scholar 

  36. Ramer, R., Bublitz, K., Freimuth, N., Merkord, J., Rohde, H., Haustein, M., Borchert, P., Schmuhl, E., Linnebacher, M. and Hinz, B. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J. 26 (2012) 1535–1548.

    PubMed  CAS  Article  Google Scholar 

  37. Pisanti, S., Picardi, P., D’Alessandro, A., Laezza, C. and Bifulco, M. The endocannabinoid signaling system in cancer. Trends Pharmacol. Sci. 34 (2013) 273–282.

    PubMed  CAS  Article  Google Scholar 

  38. Van Dross, R., Soliman, E., Jha, S., Johnson, T. and Mukhopadhyay, S. Receptor-dependent and receptor-independent endocannabinoid signaling: a therapeutic target for regulation of cancer growth. Life Sci. 92 (2013) 463–466.

    PubMed  Article  Google Scholar 

  39. Scott, K.A., Shah, S., Dalgleish, A.G. and Liu, W.M. Enhancing the activity of cannabidiol and other cannabinoids in vitro through modifications to drug combinations and treatment schedules. Anticancer Res. 33 (2013) 4373–4380.

    PubMed  CAS  Google Scholar 

  40. Toyota, H., Jiang, X.Z., Asakura, H. and Mizuguchi, J. Thy28 partially prevents apoptosis induction following engagement of membrane immunoglobulin in WEHI-231 B lymphoma cells. Cell. Mol. Biol. Lett. 17 (2012) 36–48.

    PubMed  CAS  Article  Google Scholar 

  41. Xie, C., Liu, G., Liu, J., Huang, Z., Wang, F., Lei, X., Wu, X., Huang, S., Zhong, D. and Xu, X. Anti-proliferative effects of anandamide in human hepatocellular carcinoma cells. Oncol. Lett. 4 (2012) 403–407.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Nithipatikom, K., Isbell, M.A., Endsley, M.P., Woodliff, J.E. and Campbell, W.B. Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells. Prostaglandins Other Lipid Mediat. 94 (2011) 34–43.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  43. Galanti, G., Fisher, T., Kventsel, I., Shoham, J., Gallily, R., Mechoulam, R., Lavie, G., Amariglio, N., Rechavi, G. and Toren, A. Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells. Acta Oncol. 47 (2008) 1062–1070.

    PubMed  CAS  Article  Google Scholar 

  44. Laezza, C., Pisanti, S., Crescenzi, E. and Bifulco, M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 580 (2006) 6076–6082.

    PubMed  CAS  Article  Google Scholar 

  45. Caffarel, M.M., Sarrió, D., Palacios, J., Guzmán, M. and Sánchez, C. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 66 (2006) 6615–6621.

    PubMed  CAS  Article  Google Scholar 

  46. Paulsen, K., Tauber, S., Timm, J., Goelz, N., Dumrese, C., Stolzing, A., Hass, R. and Ullrich, O. The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins. Cell Commun. Signal. 9 (2011) 33.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  47. Santoro, A., Pisanti, S., Grimaldi, C., Izzo, A.A., Borrelli, F., Proto, M.C., Malfitano, A.M., Gazzerro, P., Laezza, C. and Bifulco, M. Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int. J. Cancer 125 (2009) 996–1003.

    PubMed  CAS  Article  Google Scholar 

  48. Aceto, M.D., Scates, S.M. and Martin, B.B. Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212-2. Eur. J. Pharmacol. 416 (2001) 75–81.

    PubMed  CAS  Article  Google Scholar 

  49. Chen, W., Tang, H., Liu, H., Long, L., Gong, Z., Zheng, J., Chi, M., Xie, Y., Zheng, Z., Li, S. and Wang, L. Novel selective antagonist of the cannabinoid CB1 receptor, MJ15, with prominent anti-obesity effect in rodent models. Eur. J. Pharmacol. 637 (2010) 178–185.

    PubMed  CAS  Article  Google Scholar 

  50. Sun, Y., Alexander, S.P., Garle, M.J., Gibson, C.L., Hewitt, K., Murphy, S.P., Kendall, D.A. and Bennett, A.J. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br. J. Pharmacol. 152 (2007) 734–743.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  51. Patwardhan, A.M., Jeske, N.A., Price, T.J., Gamper, N., Akopian, A.N. and Hargreaves, K.M. The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc. Natl. Acad. Sci. USA 103 (2006) 11393–11398.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Ghil.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, HW., Park, I. & Ghil, S. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β. Cell Mol Biol Lett 19, 347–360 (2014). https://doi.org/10.2478/s11658-014-0200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0200-x

Keywords

  • Cannabinoids
  • Cdc2
  • Cdc25B
  • Cyclin B
  • G2/M phase
  • GIPs
  • HeLa
  • Phosphorylation
  • Wee1
  • Yeast-two hybrid