Skip to main content
  • Research Article
  • Published:

CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus

Abstract

Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1–15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzo-thiazoline-6 sulfonic acid) radical scavenging activity

ADP:

adenosine 5′-diphosphate sodium salt

ATP:

adenosine 5′-triphosphate disodium salt

ATPDase/NTPDase:

Ca2+/Mg2+-dependent adenosine (ectonucleoside) diphosphohydrolase (apyrase)

BSA:

bovine serum albumin

CE:

catechin equivalents

DMF:

N,N-dimethylformamide

DMSO:

dimethylsulfoxide

DPPH:

2,2-diphenyl-1-picrylhydrazyl radical scavenging activity

EC:

endothelial cells

EDTA:

ethylenediaminetetraacetic acid

FITC:

fluorescein isothiocyanate

FRAP:

ferric reducing antioxidant power assay

GAE:

gallic acid equivalents

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid

HPLC:

high-performance liquid chromatography

HUVEC:

human umbilical vein endothelial cells

IQR:

interquartile range

LQ:

lower quartile

LSGS:

Low Serum Growth Supplement (Kit)

MTT:

1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan

PVPP:

polyvinylpolypyrrolidone

R-PE:

Rphycoerythrin

TE:

Trolox equivalents

TNFα:

tumor necrosis factor alpha

TPTZ:

2,4,6-tri-2-pyridyl-s-triazine

Trolox:

6-hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid

UQ:

upper quartile

References

  1. Marcus, A.J., Safier, L.B., Broekman, M.J., Islam, N., Fliessbach, J.H., Hajjar, K.A., Kaminski, W.E., Jendraschak, E., Silverstein, R.L. and von Schacky, C. Thrombosis and inflammation as multicellular processes: significance of cell-cell interactions. Thromb. Haemost. 74 (1995) 213–217.

    PubMed  CAS  Google Scholar 

  2. Preissner, K.T. Anticoagulant potential of endothelial cell membrane components. Haemostasis 18 (1988) 271–300.

    PubMed  CAS  Google Scholar 

  3. Marcus, A.J., Safier, L.B., Hajjar, K.A., Ullman, H.L., Islam, N., Broekman, M.J. and Eiroa, A.M. Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin. Invest. 88 (1991) 1690–1696.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Bakker, W.W., Poelstra, K., Barradas, M.A. and Mikhailidis, D.P. Platelets and ectonucleotidases. Platelets 5 (1994) 121–129.

    Article  PubMed  CAS  Google Scholar 

  5. Marcus, A.J. and Safier, L.B. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J. 7 (1993) 516–522.

    PubMed  CAS  Google Scholar 

  6. Plesner, L. Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158 (1995) 141–214.

    Article  PubMed  CAS  Google Scholar 

  7. Robson, S.C., Kaczmarek, E., Siegel, J.B., Candinas, D., Koziak, K., Millan, M., Hancock, W.W. and Bach, F.H. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. 185 (1997) 153–163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Garbacki, N., Kinet, M., Nusgens, B., Desmecht, D. and Damas, J. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. J. Inflamm. (Lond). 2 (2005) 9.

    Article  CAS  Google Scholar 

  9. Leeuwenberg, J.F., Smeets, E.F., Neefjes, J.J., Shaffer, M.A., Cinek, T., Jeunhomme, T.M., Ahern, T.J. and Buurman, W.A. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77 (1992) 543–549.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Kim, J.H., Auger, C., Kurita, I., Anselm, E., Rivoarilala, L.O., Lee, H.J., Lee, K.W. and Schini-Kerth, V.B. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide 35C (2013) 54–64.

    Article  Google Scholar 

  11. Torres-Urrutia, C., Guzman, L., Schmeda-Hirschmann, G., Moore-Carrasco, R., Alarcon, M., Astudillo, L., Gutierrez, M., Carrasco, G., Yuri, J.A., Aranda, E. and Palomo, I. Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagul. Fibrinolysis 22 (2011) 197–205.

    Article  PubMed  Google Scholar 

  12. Suh, J.H., Romain, C., Gonzalez-Barrio, R., Cristol, J.P., Teissedre, P.L., Crozier, A. and Rouanet, J.M. Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food Funct. 2 (2011) 400–405.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, Z., Schwimer, J., Liu, D., Lewis, J., Greenway, F.L., York, D.A. and Woltering, E.A. Gallic acid is partially responsible for the antiangiogenic activities of Rubus leaf extract. Phytother. Res. 20 (2006) 806–813.

    Article  PubMed  CAS  Google Scholar 

  14. Rojas-Vera, J., Patel, A.V. and Dacke, C.G. Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 16 (2002) 665–668.

    Article  PubMed  Google Scholar 

  15. Durgo, K., Belscak-Cvitanovic, A., Stancic, A., Franekic, J. and Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food 15 (2012) 258–268.

    Article  PubMed  CAS  Google Scholar 

  16. Martini, S., D’Addario, C., Colacevich, A., Focardi, S., Borghini, F., Santucci, A., Figura, N. and Rossi, C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicrob. Agents 34 (2009) 50–59.

    Article  PubMed  CAS  Google Scholar 

  17. Bordonaba J.G. and Terry L.A. Biochemical profiling and chemometric analysis of seventeen UK-grown black currant cultivars. J. Agric. Food Chem. 56 (2008) 7422–7430.

    Article  PubMed  CAS  Google Scholar 

  18. Swain T and Hillis W.E. The phenolics constituents of Prunus domestica II. J. Sci. Food Agric. 10 (1959) 63–68.

    Article  CAS  Google Scholar 

  19. Rosch, D., Bergmann, M., Knorr, D. and Kroh, L.W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agric. Food Chem. 51 (2003) 4233–4239.

    Article  PubMed  Google Scholar 

  20. Hartzfeld, P.W., Forkner, R., Hunter, M.D. and Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 50 (2002) 1785–1790.

    Article  PubMed  CAS  Google Scholar 

  21. Dyrby, M., Westergaard, N. and Stapelfeldt, H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 72 (2001) 431–437.

    Article  CAS  Google Scholar 

  22. Awah, F.M., Uzoegwu, P.N., Ifeonu, P., Oyugi, J.O., Rutherford, J., Yao, X., Fehrmann, F., Fowke, K.R. and Eze, M.O. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chem. 131 (2012) 1279–1286.

    Article  CAS  Google Scholar 

  23. Nardini, M., Cirillo, M., Natella, F., Mencarelli, D., Comisso, A. and Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acid during alkaline hydrolysis. Food Chem. 79 (2002) 119–124.

    Article  CAS  Google Scholar 

  24. Zadernowski, R., Naczk, M. and Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 53 (2005) 2118–2124.

    Article  PubMed  CAS  Google Scholar 

  25. Benzie, I.F. and Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239 (1996) 70–76.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, D.O., Lee, K.W., Lee, H.J. and Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50 (2002) 3713–3717.

    Article  PubMed  CAS  Google Scholar 

  27. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26 (1999) 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63.

    Article  PubMed  CAS  Google Scholar 

  29. Geladopoulos T.P., Sotiroudis T.G. and Evangelopoulos A.E. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192 (1991) 112–116.

    Article  PubMed  CAS  Google Scholar 

  30. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150 (1985) 76–85.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, C.A., Bolton-Smith, C., Woodward, M. and Tunstall-Pedoe, H. Coffee and tea consumption and the prevalence of coronary heart disease in men and women: results from the Scottish Heart Health Study. J. Epidemiol. Community Health 47 (1993) 171–175.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Yochum, L., Kushi, L.H., Meyer, K. and Folsom, A.R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am. J. Epidemiol. 149 (1999) 943–949.

    Article  PubMed  CAS  Google Scholar 

  33. Castaner, O., Covas, M.I., Khymenets, O., Nyyssonen, K., Konstantinidou, V., Zunft, H.F., de la Torre, R., Munoz-Aguayo, D., Vila, J. and Fito, M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 95 (2012) 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  34. Fuentes, E., Fuentes, F. and Palomo, I. Mechanism of the anti-platelet effect of natural bioactive compounds: Role of peroxisome proliferator-activated receptors activation. Platelets (2013) Epub ahead of print. DOI:10.3109/09537104.2013.849334.

    Google Scholar 

  35. Abe, R., Beckett, J., Abe, R., Nixon, A., Rochier, A., Yamashita, N. and Sumpio, B. Olive oil polyphenols differentially inhibit smooth muscle cell proliferation through a G1/S cell cycle block regulated by ERK1/2. Int. J. Angiol. 21 (2012) 69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oszmianski, J., Wojdylo, A., Gorzelany, J. and Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 59 (2011) 12830–12835.

    Article  PubMed  CAS  Google Scholar 

  37. Venskutonis, P.R., Dvaranauskaite, A. and Labokas, J. Radical scavenging activity and composition of raspberry (Rubus idaeus) leaves from different locations in Lithuania. Fitoterapia 78 (2007) 162–165.

    Article  PubMed  CAS  Google Scholar 

  38. Gudej, J. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves. Acta Pol. Pharm. 60 (2003) 313–315.

    PubMed  CAS  Google Scholar 

  39. Gudej, J. and Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 27 (2004) 1114–1119.

    Article  PubMed  CAS  Google Scholar 

  40. Serteser, A., Kargioglu, M., Gok, V., Bagci, Y., Ozcan, M.M. and Arslan, D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food. Sci. Nutr. 59 (2008) 643–651.

    Article  PubMed  CAS  Google Scholar 

  41. Kaneider, N.C., Mosheimer, B., Reinisch, N., Patsch, J.R. and Wiedermann, C.J. Inhibition of thrombin-induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and plateletneutrophil interactions. Thromb. Res. 114 (2004) 185–194.

    Article  PubMed  CAS  Google Scholar 

  42. Schmatz, R., Mann, T.R., Spanevello, R., Machado, M.M., Zanini, D., Pimentel, V.C., Stefanello, N., Martins, C.C., Cardoso, A.M., Bagatini, M., Gutierres, J., Leal, C.A., Pereira, L.B., Mazzanti, C., Schetinger, M.R. and Morsch, V.M. Moderate red wine and grape juice consumption modulates the hydrolysis of the adenine nucleotides and decreases platelet aggregation in streptozotocin-induced diabetic rats. Cell Biochem. Biophys. 65 (2013) 129–143.

    Article  PubMed  CAS  Google Scholar 

  43. Ashraf, M., Shah, S.M.A.S, Ahmad, I., Ahmad, S., Arshad, S., Ahmad, K. and Nasim, F.H. Nucleoside triphosphate diphosphohydrolases (NTPDase) inhibitory activity of some medicinal plants. J. Med. Plants Res. 5 (2011) 2090–2094.

    Google Scholar 

  44. Lecka, J., Rana, M.S. and Sevigny, J. Inhibition of vascular ectonucleotidase activities by the pro-drugs ticlopidine and clopidogrel favours platelet aggregation. Br. J. Pharmacol. 161 (2010) 1150–1160.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Robson, S.C., Kaczmarek, E., Siegel, J.B., Candinas, D., Koziak, K., Millan, M., Hancock, W.W. and Bach, F.H. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. 185 (1997) 153–163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Garcia-Hernandez, M.H., Portales-Cervantes, L., Cortez-Espinosa, N., Vargas-Morales, J.M., Fritche Salazar, J.F., Rivera-Lopez, E., Rodriguez-Rivera, J.G., Quezada-Calvillo, R. and Portales-Perez, D.P. Expression and function of P2X(7) receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol. 269 (2011) 135–143.

    Article  PubMed  CAS  Google Scholar 

  47. Leeuwenberg, J.F., Smeets, E.F., Neefjes, J.J., Shaffer, M.A., Cinek, T., Jeunhomme, T.M., Ahern, T.J. and Buurman, W.A. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77 (1992) 543–549.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Grigore, A., Colceru-Mihul, S., Litescu, S., Panteli, M. and Rasit, I. Correlation between polyphenol content and anti-inflammatory activity of Verbascum phlomoides (mullein). Pharm. Biol. 51 (2013) 925–929.

    Article  PubMed  CAS  Google Scholar 

  49. Mochizuki, M., Kajiya, K., Terao, J., Kaji, K., Kumazawa, S., Nakayama, T. and Shimoi, K. Effect of quercetin conjugates on vascular permeability and expression of adhesion molecules. Biofactors 22 (2004) 201–204.

    Article  PubMed  CAS  Google Scholar 

  50. Kolodziej, H. and Kiderlen, A.F. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry 66 (2005) 2056–2071.

    Article  PubMed  CAS  Google Scholar 

  51. Durgo, K., Belscak-Cvitanovic, A., Stancic, A., Franekic, J. and Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food. 15 (2012) 258–268.

    Article  PubMed  CAS  Google Scholar 

  52. Hu, J., Zhao, J., Chen, W., Lin, S., Zhang, J. and Hong, Z. Hepatoprotection of 1beta-hydroxyeuscaphic acid - the major constituent from Rubus aleaefolius against CCl4-induced injury in hepatocytes cells. Pharm. Biol. 51 (2013) 686–690.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao, J., Chen, X., Lin, W., Wu, G., Zhuang, Q., Zhong, X., Hong, Z. and Peng, J. Total alkaloids of Rubus aleaefolius Poir inhibit hepatocellular carcinoma growth in vivo and in vitro via activation of mitochondrialdependent apoptosis. Int. J. Oncol. 42 (2013) 971–978.

    PubMed  CAS  Google Scholar 

  54. Zheng, Z.X., Zhang, L.J., Huang, C.X., Huang, Q.L., Wei, X.D., Wu, X.Y. and Zhou, W.M. [Antitumour effect of total saponins of Rubus parvifolius on malignant melanoma]. Zhongguo Zhong. Yao Za Zhi. 32 (2007) 2055–058.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezary Watala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudzinska, D., Luzak, B., Boncler, M. et al. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus . Cell Mol Biol Lett 19, 361–380 (2014). https://doi.org/10.2478/s11658-014-0202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0202-8

Keywords