Skip to main content

miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells


This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.



alpha minimal essential medium


bone marrow stem cells


bovine serum albumin


cluster of differentiation 34


cluster of differentiation 44


cluster of differentiation 90


cluster of differentiation 105


cluster of differentiation 133


complementary DNA


cycle threshold


Dulbecco’s modified Eagle’s medium


Dulbecco’s modified Eagle’s medium: nutrient mixture F-12




embryonic stem cell


fluorescence-activated cell sorting




transcription factor GATA-6


glucagon-like peptide-1


glucose transporter 2


graft-versus-host disease


hepatitis B virus


hepatitis C virus


4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid


human immunodeficiency virus


hepatocyte nuclear factor1β


hepatocyte nuclear factor 6


human placenta-derived mesenchymal stem cells




insulin-producing clusters



KIR6. 2:

potassium inwardly-rectifying channel

KRH buffer:

Krebs’ ringer bicarbonate HEPES buffer


micro ribonucleic acid


micro ribonucleic acid


mesenchymal stem cells


neuronal differentiation 1


neurogenin 3

Nkx6. 1:

NK homeobox factor 6. 1


octamer binding transcription factor 4 (transcription factor expressed by embryonic stem cells)


Opti-Minimum Essential Media


paired homeobox transcription factor 4


paired homeobox transcription factor 6


phosphate buffered saline


human placental decidua basalismesenchymal stem cells


pancreatic and duodenal homeobox 1


SRY-related HMG box 17


stromal-vascular cell fraction


  1. Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O. and Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103 (2006) 2334–2339.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. Yesil, P. and Lammert, E. Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23 (2008) 883–895.

    PubMed  CAS  Google Scholar 

  3. Warnock, G.L., Kneteman, N.M., Ryan, E.A., Evans, M.G., Seelis, R.E., Halloran, P.F., Rabinovitch, A. and Rajotte, R.V. Continued function of pancreatic islets after transplantation in type I diabetes. Lancet 2 (1989) 570–572.

    PubMed  Article  CAS  Google Scholar 

  4. Warnock, G.L., Liao, Y.H., Wang, X., Ou, D., Ao, Z., Johnson, J.D., Verchere, C.B. and Thompson, D. An odyssey of islet transplantation for therapy of type 1 diabetes. World J. Surg. 31 (2007) 1569–1576.

    PubMed  Article  Google Scholar 

  5. Thompson, D.M., Meloche, M., Ao, Z., Paty, B., Keown, P., Shapiro, R.J., Ho, S., Worsley, D., Fung, M., Meneilly, G., Begg, I.Al., Mehthel, M., Kondi, J., Harris, C., Fensom, B., Kozak, S.E., Tong, S.O., Trinh, M. and Warnock, G.L. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91 (2011) 373–378.

    PubMed  Article  Google Scholar 

  6. Fung, M.A., Warnock, G.L., Ao, Z., Keown, P., Meloche, M., Shapiro, R.J., Ho, S., Worsley, D., Meneilly, G.S., Ghofaili, K., Kozak, S.E., Tong, S.O., Trinh, M., Blackburn, L., Kozak, R.M., Fensom, B.A. and Thompson, D.M. The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report. Transplantation 84 (2007) 17–22.

    PubMed  Article  Google Scholar 

  7. Thompson, D.M., Begg, I.S., Harris, C., Ao, Z., Fung, M.A., Meloche, R.M., Keown, P., Meneilly, G.S., Shapiro, R.J., Ho, S., Dawson, K.G., Al, Ghofaili, K.A.l., Riyami, L., Al, Mehthel, M., Kozak, S.E., Tong, S.O. and Warnock, G.L. Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation 85 (2008) 1400–1405.

    PubMed  Article  Google Scholar 

  8. Warnock, G.L., Meloche, R.M., Thompson, D., Shapiro, R.J., Fung, M., Ao, Z., Ho, S., He, Z., Dai, L.J., Young, L., Blackburn, L., Kozak, S., Kim, P.T., Al-Adra D., Johnson, J.D., Liao, Y.H., Elliott, T. and Verchere, C.B. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus. Arch. Surg. 140 (2005) 735–744.

    PubMed  Article  Google Scholar 

  9. Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343 (2000) 230–238.

    PubMed  Article  CAS  Google Scholar 

  10. Johnson, J.D., Ao, Z., Ao, P., Li, H., Dai, L.J., He, Z., Tee, M., Potter, K.J., Klimek, A.M., Meloche, R.M., Thompson, D.M., Verchere, C.B. and Warnock, G.L. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 18 (2009) 833–845.

    PubMed  Article  Google Scholar 

  11. Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran, R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88.

    PubMed  Article  CAS  Google Scholar 

  12. Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J., Kotuła, L., Gil-Kulik, P., Sawiuk, M. and Kocki, J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 18 (2013) 479–493.

    PubMed  Article  Google Scholar 

  13. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 (2005) 769–773.

    PubMed  Article  CAS  Google Scholar 

  14. Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297.

    PubMed  Article  CAS  Google Scholar 

  15. Stefani, G. and Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9 (2008) 219–230.

    PubMed  Article  CAS  Google Scholar 

  16. Ambros, V. microRNAs: tiny regulators with great potential. Cell 107 (2001) 823–826.

    PubMed  Article  CAS  Google Scholar 

  17. Smallridge, R. A small fortune. Nat. Rev. Mol. Cell Biol. 2 (2001) 867.

    PubMed  Article  CAS  Google Scholar 

  18. Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. and Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5 (2007) e203.

    PubMed  Article  PubMed Central  Google Scholar 

  19. Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A. and Van, Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 282 (2007) 19575–19588.

    PubMed  Article  CAS  Google Scholar 

  20. Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 (2004) 226–230.

    PubMed  Article  CAS  Google Scholar 

  21. Gauthier, B.R. and Wollheim, C.B. MicroRNAs: ribo-regulators’ of glucose homeostasis. Nat. Med. 12 (2006) 36–38.

    PubMed  Article  CAS  Google Scholar 

  22. Cuellar, T.L. and McManus, M.T. MicroRNAs and endocrine biology. J. Endocrinol. 187 (2005) 327–332.

    PubMed  Article  CAS  Google Scholar 

  23. Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., Zhang, Y., Yang, B. and Wang, Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem. 282 (2007) 12363–12367.

    PubMed  Article  CAS  Google Scholar 

  24. Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J. and Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104 (2007) 3432–3437.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. Tang, X., Tang, G. and Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779 (2008) 697–701.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. Keller, D.M., McWeeney, S., Arsenlis, A., Drouin, J., Wright, C.V., Wang, H., Wollheim, C.B., White, P., Kaestner, K.H. and Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem. 282 (2007) 32084–32092.

    PubMed  Article  CAS  Google Scholar 

  27. Yu, X.X., Shi, Y.A., Xin, Y., Zhang, L.H., Li, Y.L. and Wu, S. Biologic characteristics of rat bone marrow mesenchymal stem cells cultured in vitro. Zhonghua Bing Li Xue Za Zhi 36 (2007) 550–554.

    PubMed  CAS  Google Scholar 

  28. Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D. and Black, I.B. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76 (2008) 130–144.

    PubMed  Article  CAS  Google Scholar 

  29. Latif, Z.A., Noel, J. and Alejandro, R.A. Simple method of staining fresh and cultured islets. Transplantation 45 (1988) 827–830.

    PubMed  Article  CAS  Google Scholar 

  30. Wei, R., Yang, J., Liu, G.Q., Gao, M.J., Hou, W.F., Zhang, L., Gao, H.W., Liu, Y., Chen, G.A. and Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulinproducing cells. Gene 518 (2013) 246–255.

    PubMed  Article  CAS  Google Scholar 

  31. Le, Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., Ljungman, P., Lönnies, H., Nava, S. and Ringdén, O. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21 (2008) 1733–1738.

    Article  Google Scholar 

  32. Macmillan, M.L., Blazar, B.R., DeFor, T.E. and Wagner, J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 43 (2009) 447–454.

    PubMed  Article  CAS  Google Scholar 

  33. Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., Izzi, L., Camussi, G. and Forni, M. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 6 (2011) 28175.

    Article  Google Scholar 

  34. Moshtagh, P.R., Emami, S.H. and Sharifi, A.M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69 (2013) 451–458.

    PubMed  Article  CAS  Google Scholar 

  35. Kadam, S., Muthyala, S., Nair, P. and Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev. Diabet. Stud. 7 (2012) 168–182.

    Article  Google Scholar 

  36. Talebi, S., Aleyasin, A., Soleimani, M. and Massumi, M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol. Appl. Biochem. 59 (2012) 205–212.

    PubMed  Article  CAS  Google Scholar 

  37. Ivey, K.N. and Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 7 (2010) 36–41.

    PubMed  Article  CAS  Google Scholar 

  38. Yi, R. and Fuchs, E. MicroRNAs and their roles in mammalian stem cells. J. Cell Sci. 124 (2011) 1775–1783.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. Bravo-Egana, V., Rosero, S., Molano, R.D., Pileggi, A., Ricordi, C., Domínguez-Bendala, J. and Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun. 366 (2008) 922–926.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D. and German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56 (2007) 2938–2945.

    PubMed  Article  CAS  Google Scholar 

  41. Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M. and Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106 (2009) 5813–5818.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. Joglekar, M.V., Joglekar, V.M. and Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns 9 (2009) 109–113.

    PubMed  Article  CAS  Google Scholar 

  43. Correa-Medina, M., Bravo-Egana, V., Rosero, S., Ricordi, C., Edlund, H., Diez, J. and Pastori, R. L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns 9 (2009) 193–199.

    PubMed  Article  CAS  Google Scholar 

  44. Murtaugh, L.C. Pancreas and beta-cell development: from the actual to the possible. Development 134 (2007) 427–438.

    PubMed  Article  CAS  Google Scholar 

  45. Oliver-Krasinski, J.M. and Stoffers, D.A. On the origin of the β cell. Genes Dev. 22 (2008) 1998–2021.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Negar Azarpira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaer, A., Azarpira, N., Vahdati, A. et al. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 19, 483–499 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Pancreas
  • Beta cells
  • miR-375
  • Placenta
  • Mesenchymal stromal cells
  • Induced pluripotent stem cell
  • microRNA
  • Insulin
  • Differentiation
  • NGN3
  • GLUT2
  • PDX1