Skip to main content

The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes

Abstract

Resveratrol is the most extensively studied stilbene derivative. We previously showed that methylthiostilbenes were more effective inhibitors of CYP1A1 and 1B1 activity than resveratrol. In this study, we investigated whether resveratrol and its methylthio-substituted derivatives, i.e. 3-M-4′-MTS (S2), 3,5-DM-4′-MTS (S5) and 3,4,5-TM-4′-MTS (S7) could activate Nrf2 signaling in the mouse epidermis and in human keratinocytes. Western blot analysis showed translocation of Nrf2 from the cytosol to the nucleus in both models. All of the tested stilbenes increased GST activity, but resveratrol was the most effective inducer. Moreover, only resveratrol increased the protein level of GSTP in the mouse epidermis. GSTM was enhanced in HaCaT cells after the treatment with derivatives S2 and S5. The same effect was observed for GSTP in the case of compound S2. Resveratrol and its derivatives reduced the NQO2 protein level in HaCaT cells. Thus, it is possible that increased expression of GSTP or GSTM and GST activity was linked with NQO2 inhibition in these cells. The results of this study indicate that resveratrol and its methylthioderivatives activate Nrf2 not only in the mouse epidermis, but also in human keratinocytes. Upregulating GST isozymes might be particularly important for deactivating chemical carcinogens, such as PAH.

Abbreviations

AhR:

aryl hydrocarbon receptor

ARE:

antioxidant response element

CDNB:

1-chloro-2,4-dinitrobenzene

CYPs:

cytochromes P450

DMEM:

Dulbecco’s modified Eagle’s medium

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DTT:

dithiothreitol

FBS:

fetal bovine serum

GSH:

glutathione

GST:

glutathione-S-transferase

GSTA:

glutathione-S-transferase A

GSTM:

glutathione-Stransferase M

GSTP:

glutathione-S-transferase P

HaCaT:

spontaneously immortalized human keratinocyte cell line

Keap1:

Kelch-like ECH-associated protein 1

MTT:

3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide

Nrf2:

nuclear factor erythroid 2-related factor 2

NQO:

NAD(P)H: quinone oxidoreductase

PAHs:

polycyclic aromatic hydrocarbons

Res:

resveratrol

S2:

3-methoxy-4′-methylthio-transstilbene (3-M-4′-MTS)

S5:

3,5-dimethoxy-4′-methylthio-trans-stilbene (3,5-DM-4′-MTS)

S7:

3,4,5-trimethoxy-4′-methylthio-trans-stilbene (3,4,5-TM-4′-MTS)

References

  1. Gescher, A., Steward, W.P., Brown, K. Resveratrol in the management of human cancer: how strong is the clinical evidence?. Ann. NY Acad. Sci. 1290 (2013) 12–20.

    PubMed  CAS  Article  Google Scholar 

  2. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C. and Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275 (1997) 218–220.

    PubMed  CAS  Article  Google Scholar 

  3. DiGiovanni, J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 54 (1992) 63–128.

    PubMed  CAS  Article  Google Scholar 

  4. Anzenbacher, P. and Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 58 (2001) 737–747.

    PubMed  CAS  Article  Google Scholar 

  5. Iskander, K., Paquet, M., Brayton, C. and Jaiswal, A.K. Deficiency of NRH:quinone oxidoreductase 2 increases susceptibility to 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene-induced skin carcinogenesis. Cancer Res. 64 (2004) 5925–5928.

    PubMed  CAS  Article  Google Scholar 

  6. Dinkova-Kostova, A.T. and Talalay, P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 52 (2008) S128–138.

    PubMed  Google Scholar 

  7. Baer-Dubowska, W. and Szaefer, H. Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opin. Drug Metab. Toxicol. 9 (2013) 927–941.

    PubMed  CAS  Article  Google Scholar 

  8. Mikstacka, R., Gnojkowski, J. and Baer-Dubowska W. Effect of natural phenols on the catalytic activity of cytochrome P450 2E1. Acta Biochim. Pol. 49 (2002) 917–925.

    PubMed  CAS  Google Scholar 

  9. Szaefer, H., Cichocki, M., Brauze, D. and Baer-Dubowska W. Alteration in phase I and II enzyme activities and polycyclic aromatic hydrocarbons-DNA adduct formation by plant phenolics in mouse epidermis. Nutr. Cancer 48 (2004) 70–77.

    PubMed  CAS  Article  Google Scholar 

  10. Szaefer, H., Krajka-Kuźniak, V. and Baer-Dubowska, W. The effect of initiating doses of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene on the expression of PAH activating enzymes and its modulation by plant phenols. Toxicology 251 (2008) 28–34.

    PubMed  CAS  Article  Google Scholar 

  11. Shimada T., Sugie, A., Yamada, H., Kawazoe, H., Hashimoto, M., Azuma, E., Nakajima, T., Inoue, K., Oda, Y. Dose — response studies on the induction of liver cytochrome P4501A1 and 1B1 by polycyclic aromatic hydrocarbons in arylhydrocarbon-responsive C57BL/6J mice. Xenobiotica 33 (2003) 957–971.

    PubMed  CAS  Article  Google Scholar 

  12. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D. and Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13 (1999) 76–86.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O’Connor, T. and Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8 (2003) 379–391.

    PubMed  CAS  Article  Google Scholar 

  14. McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J.D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 28 (2003) 21592–21600.

    Article  Google Scholar 

  15. Itoh, K., Tong, K.I. and Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 36 (2004) 1208–1213.

    PubMed  CAS  Article  Google Scholar 

  16. Nguyen, T., Yang, C.S. and Pickett, C.B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic. Biol. Med. 37 (2004) 433–441.

    PubMed  CAS  Article  Google Scholar 

  17. Surh, YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3 (2003) 768–780.

    PubMed  CAS  Article  Google Scholar 

  18. Ramos-Gomez, M., Kwak, M.K., Dolan, P.M., Itoh, K., Yamamoto, M., Talalay, P. and Kensler, T.W. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA 98 (2001) 3410–3415.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  19. Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E.J., Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32 (2004) 1377–1382.

    PubMed  CAS  Article  Google Scholar 

  20. Mikstacka, R., Baer-Dubowska, W., Wieczorek, M. and Sobiak, S. Thiomethylstilbenes as inhibitors of CYP1A1, CYP1A2 and CYP1B1 activities. Mol. Nutr. Food Res. 52 (2008) S77–83.

    PubMed  Google Scholar 

  21. Mikstacka, R., Rimando, A.M., Dutkiewicz, Z., Stefański, T. and Sobiak, S. Design, synthesis and evaluation of the inhibitory selectivity of novel transresveratrol analogues on human recombinant CYP1A1, CYP1A2 and CYP1B1. Bioorg. Med. Chem. 20 (2012) 5117–5126.

    PubMed  CAS  Article  Google Scholar 

  22. van Eijl, S., Zhu, Z., Cupitt, J., Gierula, M., Götz, C., Fritsche, E. and Edwards, RJ. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS One 7 (2012) e41721.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Rajeshwaran, G.G., Nandakumar, M., Sureshbabu, R. and Mohanakrishnan, A.K. Lewis acid-mediated Michaelis-Arbuzov reaction at room temperature: A facile preparation of arylmethyl/heteroarylmethyl phosphonates. Org. Lett. 13 (2011) 1270–1273.

    PubMed  CAS  Article  Google Scholar 

  24. Ianni, A. and Waldvogel, S.R. Reliable and versatile synthesis of 2-Arylsubstituted cinnamic acid esters. Synthesis 13 (2006) 2103–2112.

    Google Scholar 

  25. Claridge, T.D.W., Davies, S.G., Lee, J.A., Nicholson, R.L., Roberts, P.M., Russel, A.J., Smith, A.D. and Toms, S.M. Highly (E)-selective wadsworthemmons reactions promoted by methylmagnesium bromide. Org. Lett. 10 (2008) 5437–5440.

    PubMed  CAS  Article  Google Scholar 

  26. Mosman, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63.

    Article  Google Scholar 

  27. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680–685.

    PubMed  CAS  Article  Google Scholar 

  28. Towbin, H., Staehelin, T. and Gordon, J. Electrophoretic transfer of proteins from polyarylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76 (1979) 4350–4354.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  29. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275.

    PubMed  CAS  Google Scholar 

  30. Habig, W.H., Pabst, M.J. and Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 (1974) 7130–7139.

    PubMed  CAS  Google Scholar 

  31. Slocum, S.L. and Kensler, T.W. Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 85 (2011) 273–284.

    PubMed  CAS  Article  Google Scholar 

  32. Canistro, D., Bonamassa, B., Pozzetti, L., Sapone, A., Abdel-Rahman, S.Z., Biagi, G.L. and Paolini, M. Alteration of xenobiotic metabolizing enzymes by resveratrol in liver and lung of CD1 mice. Food Chem. Toxicol. 47 (2009) 454–461.

    PubMed  CAS  Article  Google Scholar 

  33. Numazawa, S. and Yoshida, T. Nrf2-dependent gene expressions: a molecular toxicological aspect. J. Toxicol. Sci. 29 (2004) 81–89.

    PubMed  CAS  Article  Google Scholar 

  34. Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99 (2002) 11908–11913.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  35. Chow, H.H., Garland, L.L., Hsu, C.H., Vining. D.R., Chew, W.M., Miller, J.A., Perloff, M., Crowell, J.A. and Alberts, D.S. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. (Phila) 3 (2010) 1168–1175.

    CAS  Article  Google Scholar 

  36. Hsieh, T.C., Wang, Z., Deng, H. and Wu, J.M. Identification of glutathione sulfotransferase-pi (GSTP1) as a new resveratrol targeting protein (RTP) and studies of resveratrol-responsive protein changes by resveratrol affinity chromatography. Anticancer Res. 28 (2008) 29–36.

    PubMed  PubMed Central  Google Scholar 

  37. Phillips, M.F. and Mantle, T.J. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem. J. 275 (1991) 703–709.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Hayes, J.D. and Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30 (1995) 445–600.

    PubMed  CAS  Article  Google Scholar 

  39. Zhang, Y., Gonzalez, V. and Xu, M.J. Expressions and regulation of glutathione S-transferase P1-1 in cultured human epidermal cells. J. Dermatol. Sci. 30 (2002) 205–214.

    PubMed  CAS  Article  Google Scholar 

  40. Radjendirane, V., Joseph, P. and Jaiswal, A.K. Gene expression of DTdiaphorase (NQO1) in cancer cells. in: Oxidative stress and signal transduction. (Forman, H.J., Cadenas, E., Eds.), Chapman & Hall, New York, 1997, 441–475.

    Chapter  Google Scholar 

  41. Shen, G., Kong A.N. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm. Drug Dispos. 30 (2009) 345–355.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  42. Buryanovskyy, L., Fu, Y., Boyd, M., Ma, Y., Hsieh, T.C., Wu, J.M. and Zhang, Z. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 43 (2004) 11417–11426.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  43. Zhang, X., Wang, Y., Yang, W., Hou, X., Zou, J. and Cao, K. Resveratrol inhibits angiotensin II-induced ERK1/2 activation by downregulating quinone reductase 2 in rat vascular smooth muscle cells. J. Biomed. Res. 26 (2012) 103–109.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Baer-Dubowska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krajka-Kuźniak, V., Szaefer, H., Stefański, T. et al. The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell Mol Biol Lett 19, 500–516 (2014). https://doi.org/10.2478/s11658-014-0209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0209-1

Keywords

  • Nrf2
  • GST
  • NQO
  • Resveratrol
  • Methylthiostilbenes
  • HaCaT cells
  • Mouse epidermis