Skip to main content

Downregulation of KDR expression induces apoptosis in breast cancer cells


Angiogenesis plays a crucial role in the growth, invasion and metastasis of breast cancer. Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are the key regulators of tumor angiogenesis. VEGFR-2, known as the kinase insert domain receptor (KDR), is a key receptor involved in malignant angiogenesis. We previously showed that knocking down KDR with short interference RNA (KDR-siRNA) markedly decreased KDR expression and suppressed tumor growth in a xenograft model. However, the mechanisms underlying the anti-cancer effects of KDR-siRNA are not clearly understood. This study aimed to elucidate the molecular mechanisms that induce apoptosis in human breast cancer MCF-7 cells after transfection with KDR-siRNA. We studied the effects of KDR-siRNA on proliferation, apoptosis, antiapoptotic and pro-apoptotic proteins, mitochondrial membrane permeability, cytochrome c release and caspase-3 activity. The results indicated that KDR-siRNA treatment significantly inhibited the proliferation and induced the apoptosis of MCF-7 cells, reduced the levels of the anti-apoptotic proteins, Bcl-2 and Bcl-xl, and increased the level of the pro-apoptotic protein Bax, resulting in a decreased Bcl-2/Bax ratio. KDR-siRNA also enhanced the mitochondrial membrane permeability, induced cytochrome c release from the mitochondria, upregulated apoptotic protease-activating factor-1 (Apaf-1), cleaved caspase-3, and increased caspase-3 activity in MCF-7 cells. Furthermore, KDR-siRNA-induced apoptosis in MCF-7 cells was blocked by the caspase inhibitor Z-VAD-FMK, suggesting a role of caspase activation in the induction of apoptosis. These results indicate that the Bcl-2 family proteins and caspase-related mitochondrial pathways are primarily involved in KDR-siRNAinduced apoptosis in MCF-7 cells and that KDR might be a potential therapeutic target for human breast cancer treatments.



apoptotic protease-activating factor-1


bovine serum albumin


Dulbecco’s modified Eagle’s medium


kinase domain receptor




sodium dodecyl sulphate


short interfering RNA


vascular endothelial growth factor


vascular endothelial growth factor receptor


  1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. Global cancer statistics. CA Cancer J. Clin. 61 (2011) 69–90.

    PubMed  Article  Google Scholar 

  2. Linos, E., Spanos, D., Rosner, B.A., Linos, K., Hesketh, T., Qu, J.D., Gao, Y.T., Zheng, W. and Colditz, G.A. Effects of reproductive and demographic changes on breast cancer incidence in China: a modeling analysis. J. Natl. Cancer Inst. 100 (2008) 1352–1360.

    PubMed Central  PubMed  Article  Google Scholar 

  3. Dai, M., Ren, J.S., Li, N., Li, Q., Yang, L. and Chen, Y.H. Estimation and prediction on cancer related incidence and mortality in China, 2008. Zhonghua Liu. Xing. Bing. Xue. Za. Zhi. 33 (2012) 57–61.

    CAS  PubMed  Google Scholar 

  4. Hyder, S.M. Sex-steroid regulation of vascular endothelial growth factor in breast cancer. Endocr. Relat. Cancer. 13 (2006) 667–687.

    CAS  PubMed  Article  Google Scholar 

  5. Takekoshi, K., Isobe, K., Yashiro, T., Hara, H., Ishii, K., Kawakami, Y., Nakai, T. and Okuda, Y. Expression of vascular endothelial growth factor (VEGF) and its cognate receptors in human pheochromocytomas. Life Sci. 74 (2004) 863–871.

    CAS  PubMed  Article  Google Scholar 

  6. Roskoski, R. Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hematol. 62 (2007) 179–213.

    PubMed  Article  Google Scholar 

  7. Vieira, J.M., Santos, S.C., Espadinha, C., Correia, I., Vag, T., Casalou, C., Cavaco, B.M., Catarino, A.L., Dias, S. and Leite, V. Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop. Eur. J. Endocrinol. 153 (2005) 701–709.

    CAS  PubMed  Article  Google Scholar 

  8. Guo, S., Colbert, L.S., Fuller, M., Zhang, Y. and Gonzalez-Perez, R.R. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim. Biophys. Acta 1806 (2010) 108–121.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Takahashi, Y., Kitadai, Y., Bucana, C.D., Cleary, K.R. and Ellis, L.M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis and proliferation of human colon cancer. Cancer Res. 55 (1995) 3964–3968.

    CAS  PubMed  Google Scholar 

  10. Ryden, L., Linderholm, B., Nielsen, N.H., Emdin, S., Jonsson, P.E. and Landberg, G. Tumor specific VEGF-A and VEGFR2/KDR protein are coexpressed in breast cancer. Breast Cancer Res. Treat. 82 (2003) 147–154.

    CAS  PubMed  Article  Google Scholar 

  11. Spratlin, J. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Curr. Oncol. Rep. 13 (2011) 97–102.

    CAS  PubMed  Article  Google Scholar 

  12. Hammond, S.M., Bexnstein, E., Beach. D. and Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Dxosophila cells. Nature 404 (2000) 293.

    CAS  PubMed  Article  Google Scholar 

  13. Ge, Y.L., Zhang, J.Y., Zhang, X., Hou, L., Li, Q. and Xue, M.L. Chemically modified siRNA directed against the KDR gene inhibits the proliferation of breast cancer cells. Mol. Med. Rep. 2 (2009) 121–127.

    CAS  PubMed  Google Scholar 

  14. Kim, E.J., Park, S.Y., Lee, J.Y. and Park, J.H. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10 (2010) 96.

    PubMed Central  PubMed  Article  Google Scholar 

  15. Minamino, M., Sakaguchi, I., Naka, T., Iked, N., Katoa, Y., Tomiyasu, I., Yano, I. and Kobayashi, K. Bacterial ceramides and sphingophospholipids induce apoptosis of human leukaemic cells. Microbiology 149 (2003) 2071–2081.

    CAS  PubMed  Article  Google Scholar 

  16. Chen, Q., Li, L., Tu, Y., Zheng, L.L., Liu, W., Zuo, X.Y., He, Y.M., Zhang, S.Y., Zhu, W., Cao. J.P., Cui, F.M. and Hou, J. MiR-34a regulates apoptosis in liver cells by targeting the KLF4 gene. Cell. Mol. Biol. Lett. 19 (2014) 52–64.

    CAS  PubMed  Article  Google Scholar 

  17. Westphal, S. and Kalthoff, H. Apoptosis: targets in pancreatic cancer. Mol. Cancer 2 (2003) 6.

    PubMed Central  PubMed  Article  Google Scholar 

  18. Kuo, P.C., Liu, H.F. and Chao, J.I. Survivin and p53 modulate quercetininduced cell growth inhibition and apoptosis in human lung carcinoma cells. J. Biol. Chem. 279 (2004) 55875–55885.

    CAS  PubMed  Article  Google Scholar 

  19. Katiyar, S.K., Roy, A.M. and Baliga, M.S. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release and caspase activation. Mol. Cancer Ther. 4 (2005) 207–216.

    CAS  PubMed  Google Scholar 

  20. Jin, Z. and El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4 (2005) 139–163.

    CAS  PubMed  Article  Google Scholar 

  21. Ghobrial, I.M., Witzig, T.E. and Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 55 (2005) 178–194.

    PubMed  Article  Google Scholar 

  22. Jagani, H., Rao, J.V., Palanimuthu, V.R., Hariharapura, R.C. and Gang, S. A nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell. Mol. Biol. Lett. 18 (2013) 120–136.

    CAS  PubMed  Article  Google Scholar 

  23. Reed, J.C. Regulation of apoptosis by Bcl-2 family proteins and its role in cancer and chemoresistance. Curr. Opin. Oncol. 7 (1995) 541–546.

    CAS  PubMed  Article  Google Scholar 

  24. Adams, J.M. and Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19 (2007) 488–496.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Kumari, A. and Kakkar, P. Lupeol prevents acetaminophen-induced in vivo hepatotoxicity by altering the Bax/Bcl-2-and oxidative stress-mediated mitochondrial signaling cascade. Life Sci. 90 (2012) 561–570.

    CAS  PubMed  Article  Google Scholar 

  26. Chen, Y.C., Shen, S.C., Lee, W.R., Hsu, F.L., Lin, H.Y., Ko, C.H. and Tseng, S.W. Emodin induces apoptosis in human promyelokukemic HL-60 cells accompanied by activation of caspase-3 cascade but independent of reactive oxygen species production. Biochem. Pharmacol. 64 (2002) 1713–1724.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Xiao Zhang or Yin-Lin Ge.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ge, YL., Zhang, SP. et al. Downregulation of KDR expression induces apoptosis in breast cancer cells. Cell Mol Biol Lett 19, 527–541 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Apoptosis
  • Breast cancer
  • MCF-7 cells
  • Cytochrome c
  • caspase-3
  • Mitochondrial pathway
  • KDR
  • VEGF
  • Short interfering RNA
  • siRNA