Skip to main content

In vitro effects of prolonged exposure to quercetin and epigallocatechin gallate of the peripheral blood mononuclear cell membrane

Abstract

The study aimed to assess biophysical changes that take place in the peripheral blood mononuclear cell (PBMC) membranes when exposed in vitro to 10 μM quercetin or epigallocatechin gallate (EGCG) for 24 and 48 h. PBMCs isolated from hypercholesterolemia patients were compared to those from normocholesterolemia subjects. The membrane fluidity and transmembrane potential were evaluated and the results were correlated with biochemical parameters relevant to oxidative stress, assessed in the patients’ plasma. The baseline value of PBMC membrane anisotropy for the hypercholesterolemia patients was lower than that of the control group. These results correlated with the plasma levels of advanced glycation end products, which were significantly higher in the hypercholesterolemia group, and the total plasma antioxidant status, which was significantly higher in normocholesterolemia subjects. In the case of normocholesterolemia cells in vitro, polyphenols induced a decrease in membrane anisotropy (7.25–11.88% at 24 h, 1.82–2.26% at 48 h) and a hyperpolarizing effect (8.30–8.90% at 24 h and 4.58–13.00% at 48 h). The same effect was induced in hypercholesterolemia cells, but only after 48 h exposure to the polyphenols: the decrease in membrane anisotropy was 5.70% for quercetin and 2.33% for EGCG. After 48 h of in vitro incubation with the polyphenols, PBMCs isolated from hypercholesterolemia patients exhibited the effects that had been registered in cells from normocholesterolemia subjects after 24 h exposure. These results outlined the beneficial action of the studied polyphenols, quercetin and EGCG, as dietary supplements in normocholesterolemia and hypercholesterolemia patients.

Abbreviations

AGEs:

advanced glycation end products

DiBAC4(3):

bis-(1,3-dibutylbarbituric acid) trimethine oxonol

DPPP:

diphenyl-1-pyrenylphosphine

EGCG:

epigallocatechin gallate

FCS:

fetal calf serum

HC:

hypercholesterolemia

NC:

normocholesterolemia

PBMCs:

peripheral blood mononuclear cells

TAS:

total antioxidant status

TMA-DPH:

1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluensulfonate

References

  1. Dykesa, L., Peterson, G.C., Rooney, W.L. and Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chemistry 128 (2011) 173–179. DOI: 10.1016/j.foodchem.2011.03.020.

    Article  Google Scholar 

  2. Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. The Plant Journal 13 (1998) 259–266. DOI: 10.1046/j.1365-313X.1998.00029.x.

    CAS  Article  Google Scholar 

  3. Procházková, D., Boušová, I. and Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82 (2011) 513–523. DOI: 10.1016/j.fitote.2011.01.018.

    PubMed  Article  Google Scholar 

  4. Weber, J.M., Ruzindana-Umunyana, A., Imbeault, L. and Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antivir. Res. 58 (2003) 167–173. DOI:10.1016/S0166-3542(02)00212-7.

    CAS  PubMed  Article  Google Scholar 

  5. Alvesalo, J., Vuorela, H., Tammela, P., Leinonen, M., Saikku, P. and Vuorela, P. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem. Pharmacol. 71 (2006) 735–741. DOI:10.1016/j.bcp.2005.12.006.

    CAS  PubMed  Article  Google Scholar 

  6. Widlansky, M.E., Duffy, S.J., Hamburg, N.M., Gokce, N., Warden, B.A., Wiseman, S., Keaney Jr., J.F., Frei, B. and Vita, J.A. Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic. Biol. Med. 38 (2005) 499–506. DOI: 10.1016/j.freeradbiomed.2004.11.013.

    CAS  PubMed  Article  Google Scholar 

  7. Hubbard, G.P., Wolffram, S., Lovegrove, J.A. and Gibbins, J.M. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost. 2 (2004) 2138–2145. DOI: 10.1111/j.1538-7836.2004.01067.x.

    CAS  PubMed  Article  Google Scholar 

  8. Kaliora, A.C., Dedoussis, G.V.Z. and Schmidt, H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 187 (2006) 1–17. DOI: 10.1016/j.atherosclerosis.2005.11.001.

    CAS  PubMed  Article  Google Scholar 

  9. Ajdžanović, V.Z., Milošević, V.Lj. and Spasojević, I.B. Glucocorticoid excess and disturbed hemodynamics in advanced age: the extent to which soy isoflavones may be beneficial. Gen. Physiol. Biophys. 31 (2012) 367–374. DOI: 10.4149/gpb_2012_041.

    PubMed  Article  Google Scholar 

  10. Ajdžanović, V.Z., Medigović, I.M., Pantelić, J.B. and Milošević, V.Lj. Soy isoflavones and cellular mechanics. J. Bioenerg. Biomembr. 46 (2014) 99–107. DOI: 10.1007/s10863-013-9536-6.

    PubMed  Article  Google Scholar 

  11. Chanet, A., Milenkovic, D., Manach, C., Mazur, A. and Morand, C. Citrus flavanones: what is their role in cardiovascular protection? J. Agric. Food Chem. 60 (2012) 8809–8822. DOI: 10.1021/jf300669s.

    CAS  PubMed  Article  Google Scholar 

  12. Siasos, G., Tousoulis, D., Tsigkou, V., Kokkou, E., Oikonomou, E., Vavuranakis, M., Basdra, E.K., Papavassiliou, A.G. and Stefanadis, C. Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr. Med. Chem. 20 (2013) 2641–2660. DOI: 10.2174/0929867311320210003.

    CAS  PubMed  Article  Google Scholar 

  13. Xiao, Q., Park, Y., Hollenbeck, A.R. and Kitahara, C.M. Dietary flavonoid intake and thyroid cancer risk in the NIH-AARP diet and health study. Cancer Epidemiol. Biomarkers Prev. 23 (2014). [Epub ahead of print] DOI: 10.1158/1055-9965.EPI-13-1150.

  14. Bhatti, S.K., O’Keefe, J.H. and Lavie, C.J. Coffee and tea: perks for health and longevity? Curr. Opin. Clin. Nutr. Metab. Care. 16 (2013) 688–697. DOI: 10.1097/MCO.0b013e328365b9a0.

    CAS  PubMed  Article  Google Scholar 

  15. Fraga, C.G., Galleano, M., Verstraeten, S.V. and Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31 (2010) 435–445. DOI: 10.1016/j.mam.2010.09.006.

    CAS  PubMed  Article  Google Scholar 

  16. Weng, C.J. and Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 38 (2012) 76–87. DOI:10.1016/j.ctrv.2011.03.001.

    CAS  PubMed  Article  Google Scholar 

  17. Karewicza, A., Bielska, D., Gzyl-Malcher, B., Kepczynski, M., Lach, R. and Nowakowska, M. Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf. B: Biointerfaces 88 (2011) 231–239. DOI: 10.1016/j.colsurfb.2011.06.037.

    Article  Google Scholar 

  18. Androutsopoulos, V.P., Papakyriakou, A., Vourloumis, D., Tsatsakis, A.M. and Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther. 126 (2010) 9–20. DOI:10.1016/j.pharmthera.2010.01.009.

    CAS  PubMed  Article  Google Scholar 

  19. Margina, D., Ilie, M., Manda, G., Neagoe, I., Mocanu, M., Ionescu, D., Gradinaru, D. and Ganea, C. Quercetin and epigallocatechin gallate effects on the cell membranes biophysical properties correlate with their antioxidant potential. Gen. Physiol. Biophys. 31 (2012) 47–55. DOI: 10.4149/gpb_2012_005.

    CAS  PubMed  Article  Google Scholar 

  20. Chen, R., Wang, J.B., Zhang, X.Q., Ren, J. and Zeng, C.M. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch. Biochem. Biophys. 507 (2011) 343–349. DOI: 10.1016/j.abb.2010.12.033.

    CAS  PubMed  Article  Google Scholar 

  21. Ajdzanović, V., Spasojević, I., Filipović, B., Sosić-Jurjević, B., Sekulić, M. and Milosević, V. Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can. J. Physiol. Pharmacol. 88 (2010) 497–500. DOI: 10.1139/y10-020.

    PubMed  Article  Google Scholar 

  22. Kimura, Y., Hyogo, H., Yamagishi, S., Takeuchi, M., Ishitobi, T., Nabeshima, Y., Arihiro, K. and Chayama, K. Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J. Gastroenterol. 45 (2010) 750–757. DOI: 10.1007/s00535-010-0203-y.

    CAS  PubMed  Article  Google Scholar 

  23. Stirban, A., Gawlowski, T. and Roden, M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol. Metab. 3 (2013) 94–108. DOI:10.1016/j.molmet.2013.11.006.

    PubMed Central  PubMed  Article  Google Scholar 

  24. Margina, D., Ilie, M. and Gradinaru, D. Quercetin and Epigallocatechin Gallate Induce in Vitro a Dose-Dependent Stiffening and Hyperpolarizing Effect on the Cell Membrane of Human Mononuclear Blood Cells. Int. J. Mol. Sci. 13 (2012) 4839–4859. DOI:10.3390/ijms13044839.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Ionescu, D., Margina, D., Ilie, M., Iftime, A. and Ganea, C. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol. Food Chem. Toxicol. 61 (2013) 94–100. DOI: 10.1016/ j.fct.2013.03.007.

    CAS  PubMed  Article  Google Scholar 

  26. Llorente-Cortés, V., De Gonzalo-Calvo, D., Orbe, J., Páramo, J.A. and Badimon, L. Signature of subclinical femoral artery atherosclerosis in peripheral blood mononuclear cells. Eur. J. Clin. Invest. 44 (2014) 539–548. DOI: 10.1111/eci.12267.

    PubMed  Article  Google Scholar 

  27. Rentoukas, E., Tsarouhas, K., Kaplanis, I., Korou, E., Nikolaou, M., Marathonitis, G., Kokkinou, S., Haliassos, A., Mamalaki, A., Kouretas, D. and Tsitsimpikou, C. Connection between telomerase activity in PBMC and markers of inflammation and endothelial dysfunction in patients with metabolic syndrome. PLoS One 7 (2012) e35739. DOI: 10.1371/journal. pone.0035739.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V. and Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. (Lond.) 84 (1993) 407–412.

    CAS  Google Scholar 

  29. Randox Total Antioxidant Status (TAS) manual, http://www.veritastk.co.jp/attached/3556/NX2332manual.pdf, last accessed 14.06.2014.

  30. Pebay-Peyroula, E., Dufourc, E.J. and Szabo, A.G. Location of diphenylhexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction. Biophys. Chem. 53 (1994) 45–56.

    CAS  PubMed  Article  Google Scholar 

  31. Ilie, M., Margina, D., Katona, E., Ganea, C., Pencea, C., Gradinaru, D., Mitrea, N. and Balalau, D. Quercetin and epigallocatechin gallate effect on the lipid order parameter of peripheral blood mononuclear cells from diabetes patients. Rom. Biotechnol. Lett. 14 (2009) 4804–4811.

    CAS  Google Scholar 

  32. Lakowicz, J.R. Principles of fluorescence spectroscopy, 2-nd Edition, New York: Kluwer Academic/Plenum Press, 1999, 298–395.

    Book  Google Scholar 

  33. Epps, D.E., Wolfe, M.L. and Groppi, V. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) in model systems and cells. Chem. Phys. Lipids 69 (1994) 137–150.

    CAS  PubMed  Article  Google Scholar 

  34. Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T. and Noguchi, N. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474 (2000) 137–140.

    CAS  Article  Google Scholar 

  35. Sebeková, K., Podracká, L., Blazícek, P., Syrová, D., Heidland, A. and Schinzel, R. Plasma levels of advanced glycation end products in children with renal disease. Pediatr. Nephrol. 16 (2001) 1105–1112.

    PubMed  Article  Google Scholar 

  36. Margina, D., Gradinaru, D., Panaite, C., Cimponeriu, D., Vladica, M., Danciulescu R. and Mitrea, N. The association of adipose tissue markers for redox imbalance and the cardio-vascular risk in obese patients. HealthMED 5 (2011) 194–199.

    Google Scholar 

  37. Takahashi, M., Shibata, M. and Niki, E. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic. Biol. Med. 31 (2001) 164–174.

    CAS  PubMed  Article  Google Scholar 

  38. Valencia, J.V., Weldon, S.C., Quinn, D., Kiers, G.H., DeGroot, J., TeKoppele J.M. and Huges, T.E. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal. Biochem. 324 (2004) 68–78. DOI: 10.1016/j.ab.2003.09.013

    CAS  PubMed  Article  Google Scholar 

  39. Yan, S.F., Ramasamy, R., Naka, Y. and Schmidt, A.M. Glycation, inflammation, and RAGE: A scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93 (2003) 1159–1169. DOI: 10.1161/01.RES.0000103862.26506.3D

    CAS  PubMed  Article  Google Scholar 

  40. Sergent, O., Ekroos, K., Lefeuvre-Orfila, L., Rissel, M., Forsberg, G.B., Oscarsson J., Andersson, T.B. and Lagadic-Gossmann, D. Ximelagatran increases membrane fluidity and changes membrane lipid composition in primary human hepatocytes. Toxicol. in Vitro 23 (2009) 1305–1310. DOI: 10.1016/j.tiv.2009.07.019.

    CAS  PubMed  Article  Google Scholar 

  41. Wu, L., Ma, L., Nicholson, L.F.B. and Black, P.N. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir. Med. 105 (2011) 329–336. DOI: 10.1016/j.rmed.2010.11.001

    PubMed  Article  Google Scholar 

  42. Hirose, J., Yamabe, S., Takada, K., Okamoto, N., Nagai, R. and Mizuta H. Immunohistochemical distribution of advanced glycation end products (AGEs) in human osteoarthritic cartilage. Acta Histochem. 113 (2011) 613–618. DOI: 10.1016/j.acthis.2010.06.007.

    CAS  PubMed  Article  Google Scholar 

  43. Pytel, E., Olszewska-Banaszczyk, M., Koter-Michalak, M. and Broncel, M. Increased oxidative stress and decreased membrane fluidity in erythrocytes of CAD patients. Biochem. Cell Biol. 91 (2013) 315–318. DOI: 10.1139/bcb-2013-0027.

    CAS  PubMed  Article  Google Scholar 

  44. Ziobro, A., Duchnowicz, P., Mulik, A., Koter-Michalak, M. and Broncel, M. Oxidative damages in erythrocytes of patients with metabolic syndrome. Mol. Cell Biochem. 378 (2013) 267–273. DOI: 10.1007/s11010-013-1617-7.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Sonmez, M., Ince, H.Y., Yalcin, O., Ajdžanović, V., Spasojević, I., Meiselman, H.Z. and Baskurt, O.K. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size. PLoS One 8 (2013) e76579. DOI: 10.1371/journal. pone.0076579.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Olchowik, E., Lotkowski, K., Mavlyanov, S., Abdullajanova, N., Ionov, M., Bryszewska, M. and Zamaraeva, M. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell. Mol. Biol. Lett. 17 (2012) 333–348. DOI: 10.2478/s11658-012-0014-7.

    CAS  PubMed  Article  Google Scholar 

  47. Ajdžanović, V., Spasojević, I., Sošić-Jurjević, B., Filipović, B., Trifunović, S., Sekulić, M. and Milošević, V. The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study. J. Membr. Biol. 239 (2011) 131–135. DOI: 10.1007/s00232-010-9332-8.

    PubMed  Article  Google Scholar 

  48. Ajdžanović, V., Mojić, M., Maksimović-Ivanić, D., Bulatović, M., Mijatović, S., Milošević, V. and Spasojević, I. Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. J. Membr. Biol. 246 (2013) 307–314. DOI: 10.1007/s00232-013-9531-1.

    PubMed  Article  Google Scholar 

  49. Maldonado-Celis, M.E., Bousserouel, S., Gosse, F., Lobstein, A. and Raul, F. Apple procyanidins activate apoptotic signaling pathway in human colon adenocarcinoma cells by a lipid-raft independent mechanism. Biochem. Biophys. Res. Commun. 388 (2009) 372–376. DOI: 10.1016/j.bbrc.2009.08.016.

    CAS  PubMed  Article  Google Scholar 

  50. Annaba, F., Kumar, P., Dudeja, A.K., Saksena, S., Gill, R.K. and Alrefai, W.A. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am. J. Physiol. Gastrointest. Liver Physiol. 298 (2010) G467–G473. DOI: 10.1152/ajpgi.00360.2009

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Mylonas, C. and Kouretas, D. Lipid peroxidation and tissue damage. In Vivo 13 (1999) 295–309.

    CAS  PubMed  Google Scholar 

  52. Veskoukis, A.S., Tsatsakis, A.M. and Kouretas, D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 17 (2012) 11–21. DOI: 10.1007/s12192-011-0293-3.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  53. Shimizu, M., Shirakami, Y., Sakai, H., Yasuda, Y., Kubota, M., Adachi, S., Tsurumi, H., Hara, Y. and Moriwaki H. (−)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem. Biol. Interact. 185 (2010) 247–252. DOI: 10.1016/j.cbi.2010.03.036.

    CAS  PubMed  Article  Google Scholar 

  54. Tarahovsky, Y.S., Kim, Y.A., Yagolnik, E.A. and Muzafarov, E.N. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta (BBA) — Biomembranes 1838 (2014), 1235–1246. DOI: 10.1016/ j.bbamem.2014.01.021.

    CAS  Article  Google Scholar 

  55. Scheidt, H.A., Pampel, A., Nissler, L., Gebhardt, R. and Huster, D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta (BBA) - Biomembranes 1663 (2004) 97–107. DOI: 10.1016/j.bbamem.2004.02.004

    CAS  Article  Google Scholar 

  56. Oh, H.Y., Leem, J., Yoon, S.J., Yoon, S. and Hong, S.J. Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochem. Biophys. Res. Commun. 393 (2010) 319–324. DOI: 10.1016/j.bbrc.2010.01.133

    CAS  PubMed  Article  Google Scholar 

  57. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47 (2006) 1597–1598. DOI: 10.1194/jlr.E600002-JLR200

    CAS  PubMed  Article  Google Scholar 

  58. Simons, K. and Vaz, W.L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33 (2004) 269–295. DOI: 10.1146/annurev.biophys.32.110601.141803.

    CAS  PubMed  Article  Google Scholar 

  59. Spector, A.A, Mathur, S.N., Kaduce, T.L. and Hyman B.T. Lipid nutrition and metabolism of cultured mammalian cells. Prog. Lipid Res. 19 (1981) 155–186.

    Article  Google Scholar 

  60. Spector, A.A. and Yorek., M.A. Membrane lipid composition and cellular function. J. Lipid Res. 26 (1985) 1015–1035.

    CAS  PubMed  Google Scholar 

  61. Elson, E.L., Fried, E., Dolbow, J.E. and Genin, G.M. Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207–226. DOI: 10.1146/annurev.biophys.093008.131238.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Golfetto, O., Hinde, E. and Grattone, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104 (2013) 1238–1247. DOI: http://dx.doi.org/10.1016/j.bpj.2012.12.057.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Nowotarski, K., Sapoń, K., Kowalska, M., Janas, T. and Janas T. Membrane potential-dependent binding of polysialic acid to lipid monolayers and bilayers. Cell. Mol. Biol. Lett. 18 (2013) 579–594. DOI: 10.2478/s11658-013-0108-x.

    CAS  PubMed  Article  Google Scholar 

  64. Naudí, A., Jové, M., Ayala, V., Portero-Otín, M., Barja, G. and Pamplona, G. Membrane lipid unsaturation as physiological adaptation to animal longevity. Front. Physiol. 4 (2013) 1–13. DOI: 10.3389/fphys.2013.00372.

    Article  Google Scholar 

  65. Van der Heide, D., Kastelijn, J. and Schröder-van der Elst, J.P. Flavonoids and thyroid disease. Biofactors 19 (2003) 113–119. DOI: 10.1002/biof. 5520190303

    PubMed  Article  Google Scholar 

  66. Leclercq, G. and Jacquot, Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J. Steroid Biochem. Mol. Biol. 139 (2014) 237–244. DOI: 10.1016/j.jsbmb.2012.12.010.

    CAS  PubMed  Article  Google Scholar 

  67. Cederroth, C.R., Zimmermann, C. and Nef, S. Soy, phytoestrogens and their impact on reproductive health. Mol. Cell. Endocrinol. 355 (2012) 192–200. DOI: 10.1016/j.mce.2011.05.049.

    CAS  PubMed  Article  Google Scholar 

  68. Ohlsson, A., Ullerås, E., Cedergreen, N. and Oskarsson, A. Mixture effects of dietary flavonoids on steroid hormone synthesis in the human adrenocortical H295R cell line. Food Chem. Toxicol. 48 (2010) 3194–3200. DOI: 10.1016/j.fct.2010.08.021.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Ilie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Margina, D., Ilie, M., Manda, G. et al. In vitro effects of prolonged exposure to quercetin and epigallocatechin gallate of the peripheral blood mononuclear cell membrane. Cell Mol Biol Lett 19, 542–560 (2014). https://doi.org/10.2478/s11658-014-0211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0211-7

Keywords

  • Membrane fluidity
  • Transmembrane potential
  • Total antioxidant status
  • Advanced glycation end products
  • Hypercholesterolemia
  • Quercetin
  • Epigallocatechin gallate