Skip to main content

Gene expression patterns in bone following lipopolysaccharide stimulation


Bone displays suppressed osteogenesis in inflammatory diseases such as sepsis and rheumatoid arthritis. However, the underlying mechanisms have not yet been clearly explained. To identify the gene expression patterns in the bone, we performed Affymetrix Mouse Genome 430 2.0 Array with RNA isolated from mouse femurs 4 h after lipopolysaccharide (LPS) administration. The gene expressions were confirmed with real-time PCR. The serum concentration of the N-terminal propeptide of type I collagen (PINP), a bone-formation marker, was determined using ELISA. A total of 1003 transcripts were upregulated and 159 transcripts were downregulated (more than twofold upregulation or downregulation). Increased expression levels of the inflammation-related genes interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were confirmed from in the period 4 h to 72 h after LPS administration using real-time PCR. Gene ontogene analysis found four bone-related categories involved in four biological processes: system development, osteoclast differentiation, ossification and bone development. These processes involved 25 upregulated genes. In the KEGG database, we further analyzed the transforming growth factor β (TGF-β) pathway, which is strongly related to osteogenesis. The upregulated bone morphogenetic protein 2 (BMP2) and downregulated inhibitor of DNA binding 4 (Id4) expressions were further confirmed by real-time PCR after LPS stimulation. The osteoblast function was determined through examination of the expression levels of core binding factor 1 (Cbfa1) and osteocalcin (OC) in bone tissues and serum PINP from 4 h to 72 h after LPS administration. The expressions of OC and Cbfa1 decreased 6 h after administration (p < 0.05). Significantly suppressed PINP levels were observed in the later stage (from 8 h to 72 h, p < 0.05) but not in the early stage (4 h or 6 h, p > 0.05) of LPS stimulation. The results of this study suggest that LPS induces elevated expressions of skeletal system development- and osteoclast differentiation-related genes and inflammation genes at an early stage in the bone. The perturbed functions of these two groups of genes may lead to a faint change in osteogenesis at an early stage of LPS stimulation. Suppressed bone formation was found at later stages in response to LPS stimulation.



bone morphogenetic protein


bone mesenchymal stem cells


core binding factor 1


inhibitor of DNA binding 4






Kyoto Encyclopedia of Genes and Genomes




N-terminal propeptide of type I procollagen




transforming growth factor β


tumor necrosis factor α


  1. Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M. and Scadden, D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425 (2003) 841–846. DOI: 10.1038/nature02040.

    Article  CAS  PubMed  Google Scholar 

  2. Riedemann, N.C., Guo, R.F. and Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9 (2003) 517–524. DOI: 10.1038/nm0503-517.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J. and Choi, Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24 (2006) 33–63. DOI: 10.1146/annurev.immunol.24.021605.090646.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., Dacquin, R., Mee, P.J., McKee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P., Karsenty, G. Endocrine regulation of energy metabolism by the skeleton. Cell 130 (2007) 456–469. DOI: 10.1016/j.cell.2007.05.047.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nair, S.P., Meghji, S., Wilson, M., Reddi, K., White, P. and Henderson, B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect. Immun. 64 (1996) 2371–2380.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhuang, L., Jung, J.Y., Wang, E.W., Houlihan, P., Ramos, L., Pashia, M. and Chole, R.A. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 117 (2007) 841–847. DOI: 10.1097/MLG.0b013e318033783a.

    Article  CAS  PubMed  Google Scholar 

  7. Grimm, G., Vila, G., Bieglmayer, C., Riedl, M., Luger, A. and Clodi, M. Changes in osteopontin and in biomarkers of bone turnover during human endotoxemia. Bone 47 (2010) 388–391. DOI: 10.1016/j.bone.2010.04.602.

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Amer, Y., Ross, F.P., Edwards, J. and Teitelbaum, S.L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100 (1997) 1557–1565. DOI: 10.1172/JCI119679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lowik, C.W., Nibbering, P.H., van de Ruit, M. and Papapoulos, S.E. Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J. Clin. Invest. 93 (1994) 1465–1472. DOI: 10.1172/JCI117124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nakamura, T., Kawagoe, Y., Matsuda, T. and Koide, H. Effect of polymyxin B-immobilized fiber on bone resorption in patients with sepsis. Intensive Care Med. 30 (2004) 1838–1841. DOI: 10.1007/s00134-004-2357-7.

    Article  PubMed  Google Scholar 

  11. Zhang, Y., Xue, C., Zhu, T., Du, X., Su, N., Qi, H., Yang, J., Shi, Y. and Chen, L. Serum bone alkaline phosphatase in assessing illness severity of infected neonates in the neonatal intensive care unit. Int. J. Biol. Sci. 8 (2012) 30–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kadono, H., Kido, J., Kataoka, M., Yamauchi, N. and Nagata, T. Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect. Immun. 67 (1999) 2841–2846.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Xing, Q., Ye, Q., Fan, M., Zhou, Y., Xu, Q. and Sandham, A. Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J. Cell. Physiol. 225 (2010) 106–114. DOI: 10.1002/jcp.22201.

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J. and Nanes, M.S. Inhibition of osteoblast differentiation by tumor necrosis factoralpha. Endocrinology 141 (2000) 3956–3964. DOI: 10.1210/endo.141.11.7739.

    CAS  PubMed  Google Scholar 

  15. Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S. and Nanes, M.S. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J. Biol. Chem. 277 (2002) 2695–2701. DOI: 10.1074/jbc.M106339200.

    Article  CAS  PubMed  Google Scholar 

  16. Ding, J., Ghali, O., Lencel, P., Broux, O., Chauveau, C., Devedjian, J.C., Hardouin, P. and Magne, D. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84 (2009) 499–504. DOI: 10.1016/j.lfs.2009.01.013.

    Article  CAS  PubMed  Google Scholar 

  17. Smith, D.D., Gowen, M. and Mundy, G.R. Effects of interferon-gamma and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology 120 (1987) 2494–2499. DOI: 10.1210/endo-120-6-2494.

    Article  CAS  PubMed  Google Scholar 

  18. Canalis, E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 118 (1986) 74–81. DOI:10.1210/endo-118-1-74.

    Article  CAS  PubMed  Google Scholar 

  19. Centrella, M., McCarthy, T.L. and Canalis, E. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123 (1988) 1442–1448. DOI: 10.1210/endo-123-3-1442.

    Article  CAS  PubMed  Google Scholar 

  20. Tsuboi, M., Kawakami, A., Nakashima, T., Matsuoka, N., Urayama, S., Kawabe, Y., Fujiyama, K., Kiriyama, T., Aoyagi, T., Maeda, K. and Eguchi, K. Tumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J. Lab. Clin. Med. 134 (1999) 222–231.

    Article  CAS  PubMed  Google Scholar 

  21. Christiansen, J.H., Coles, E.G. and Wilkinson, D.G. Molecular control of neural crest formation, migration and differentiation. Curr. Opin. Cell. Biol. 12 (2000) 719–724.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, H. and Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122 (1996) 2977–2986.

    CAS  PubMed  Google Scholar 

  23. Wall, N.A. and Hogan, B.L. TGF-beta related genes in development. Curr. Opin. Genet. Dev. 4 (1994) 517–522.

    Article  CAS  PubMed  Google Scholar 

  24. Rosen, V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20 (2009) 475–480. DOI:10.1016/j.cytogfr. 2009.10.018.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, T., Gao, Y., Sakamoto, K., Minamizato, T., Furukawa, K., Tsukazaki, T., Shibata, Y., Bessho, K., Komori, T. and Yamaguchi, A. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell Physiol. 211 (2007) 728–735. DOI: 10.1002/jcp.20988.

    Article  CAS  PubMed  Google Scholar 

  26. Zamurovic, N., Cappellen, D., Rohner, D. and Susa, M. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J. Biol. Chem. 279 (2004) 37704–33715. DOI: 10.1074/jbc.M403813200.

    Article  CAS  PubMed  Google Scholar 

  27. Bedford, L., Walker, R., Kondo, T., van Cruchten, I., King, E.R. and Sablitzky, F. Id4 is required for the correct timing of neural differentiation. Dev. Biol. 280 (2005) 386–395. DOI: 10.1016/j.ydbio.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  28. Rivera, R. and Murre, C. The regulation and function of the Id proteins in lymphocyte development. Oncogene 20 (2001) 8308–8316. DOI: 10.1038/sj.onc.1205091.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, R.L., Yuan, Y., Zou, G.M., Liu, G., Tu, J. and Li, Q. LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-kappaB and BMP/Smad signaling. Stem Cells Dev. 23 (2014) 277–289. DOI: 10.1089/scd.2013.0345.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Su, N., Du, X. et al. Gene expression patterns in bone following lipopolysaccharide stimulation. Cell Mol Biol Lett 19, 611–622 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lipopolysaccharide
  • Microarray
  • Bone
  • Mouse
  • Inflammation
  • Bone morphogenetic protein 2
  • N-terminal propeptide of type I collagen
  • Osteogenesis
  • Core binding factor 1
  • Osteocalcin