Skip to main content
  • Short Communication
  • Published:

The PPARα pathway in Vγ9Vδ2 T cell anergy

Abstract

Phosphoantigens (PAgs) activate Vγ9Vδ2 T lymphocytes, inducing their potent and rapid response in vitro and in vivo. However, humans and nonhuman primates that receive repeated injections of PAgs progressively lose their Vγ9Vδ2 T cell response to them. To elucidate the molecular mechanisms of this in vivo desensitization, we analyzed the transcriptome of circulating Vγ9Vδ2 T cells from macaques injected with PAg. We showed that three PAg injections induced the activation of the PPARα pathway in Vγ9Vδ2 T cells. Thus, we analyzed the in vitro response of Vγ9Vδ2 T cells stimulated with a PPARα agonist. We demonstrated that in vitro PPARα pathway activation led to the inhibition of the BrHPP-induced activation and proliferation of human Vγ9Vδ2 T cells. Since the PPARα pathway is involved in the antigen-selective desensitization of human Vγ9Vδ2 T cells, the use of PPARα inhibitors could enhance cancer immunotherapy based on Vγ9Vδ2 T cells.

Abbreviations

CFSE:

carboxyfluorescein succidimidyl ester

GSEA:

Gene Set Enrichment Analysis

IL-2:

interleukin 2

PAg:

phosphoantigen

PPAR:

peroxisome proliferator-activated receptors

References

  1. Angelini, D.F., Borsellino, G., Poupot, M, Diamantini, A., Poupot, R., Bernardi, G., Poccia, F., Fournie, J. J. and Battistini, L. FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways. Blood 104 (2004) 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  2. Rothenfusser, S., Buchwald, A., Kock, S., Ferrone, S. and Fisch, P. Missing HLA class I expression on Daudi cells unveils cytotoxic and proliferative responses of human gammadelta T lymphocytes. Cell. Immunol. 215 (2002) 32–44.

    Article  CAS  PubMed  Google Scholar 

  3. Kunzmann, V. and Wilhelm, M. Anti-lymphoma effect of gammadelta T cells. Leuk. Lymphoma 46 (2005) 671–680.

    Article  CAS  PubMed  Google Scholar 

  4. Bonneville, M. and Scotet, E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr. Opin. Immunol. 18 (2006) 539–546.

    Article  CAS  PubMed  Google Scholar 

  5. Kabelitz, D., Wesch, D. and He, W. Perspectives of gammadelta T cells in tumor immunology. Cancer Res. 67 (2007) 5–8.

    Article  CAS  PubMed  Google Scholar 

  6. Caccamo, N., Meraviglia, S., Cicero, G., Gulotta, G., Moschella, F., Cordova, A., Gulotta, E., Salerno, A. and Dieli, F. Aminobisphosphonates as new weapons for gammadelta T cell-based immunotherapy of cancer. Curr. Med. Chem. 15 (2008) 1147–1153.

    Article  CAS  PubMed  Google Scholar 

  7. Sicard, H., Ingoure, S., Luciani, B., Serraz, C., Fournie, J.J., Bonneville, M., Tiollier, J. and Romagne, F. In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J. Immunol. 175 (2005) 5471–5480.

    Article  CAS  PubMed  Google Scholar 

  8. Cendron, D., Ingoure, S., Martino, A., Casetti, R., Horand, F., Romagne, F., Sicard, H., Fournie, J.J. and Poccia, F. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates. Eur. J. Immunol. 37 (2007) 549–565.

    Article  CAS  PubMed  Google Scholar 

  9. Sicard, H., Rossi, JP., Rousselot, P., Colette, A., Paiva C., Ingoure, S. and Lafaye de Micheaux, S. Cognitive study of reactivity to IPH1101 of peripheral γδ T lymphocytes from chronic myeloid leukemia, multiple myeloma and follicular lymphoma patients. ASH Annual Meeting Abstracts 112 (2008) 1530.

    Google Scholar 

  10. Barbier, O., Torra, I.P., Duguay, Y., Blanquart, C., Fruchart, J.C., Glineur, C. and Staels, B. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22 (2002) 717–726.

    Article  CAS  PubMed  Google Scholar 

  11. Daynes, R.A. and Jones, D.C. Emerging roles of PPARs in inflammation and immunity. Nat. Rev. Immunol. 2 (2002) 748–759.

    Article  CAS  PubMed  Google Scholar 

  12. Delerive, P., De Bosscher, K., Besnard, S., Vanden Berghe, W., Peters, J.M., Gonzalez, F. J., Fruchart, J.C., Tedgui, A., Haegeman, G. and Staels, B. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 274 (1999) 32048–32054.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, M.A., Rego, D., Moshkova, M., Kebir, H., Chruscinski, A., Nguyen, H., Akkermann, R., Stanczyk, F.Z., Prat, A., Steinman, L. and Dunn, S.E. Peroxisome proliferator-activated receptor (PPAR)alpha and -gamma regulate IFNgamma and IL-17A production by human T cells in a sexspecific way. Proc. Natl. Acad. Sci. USA 109 (2012) 9505–9510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martinet, L., Poupot, R. and Fournie, J.J. Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol. Lett. 124 (2009) 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Capietto, A.H., Martinet, L. and Fournie, J.J. How tumors might withstand gammadelta T-cell attack. Cell. Mol. Life Sci. 68 (2011) 2433–2442.

    Article  CAS  PubMed  Google Scholar 

  16. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. and Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102 (2005) 15545–15550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Boullier, S., Poquet, Y., Debord, T., Fournie, J.J. and Gougeon, M.L. Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vgamma9Vdelta2 T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons. Eur. J. Immunol. 29 (1999) 90–99.

    Article  CAS  PubMed  Google Scholar 

  18. Martini, F., Paglia, M.G., Montesano, C., Enders, P.J., Gentile, M., Pauza, C.D., Gioia, C., Colizzi, V., Narciso, P., Pucillo, L.P. and Poccia, F. V gamma 9V delta 2 T-cell anergy and complementarity-determining region 3-specific depletion during paroxysm of nonendemic malaria infection. Infect. Immun. 71 (2003) 2945–2949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Montesano, C., Gioia, C., Martini, F., Agrati, C., Cairo, C., Pucillo, L.P., Colizzi, V. and Poccia, F. Antiviral activity and anergy of gammadeltaT lymphocytes in cord blood and immuno-compromised host. J. Biol. Regul. Homeost. Agents 15 (2001) 257–264.

    CAS  PubMed  Google Scholar 

  20. Luna-Gomes, T., Bozza, P.T. and Bandeira-Melo, C. Eosinophil recruitment and activation: the role of lipid mediators. Front. Pharmacol. 4 (2013) 27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Montuschi, P. LC/MS/MS analysis of leukotriene B4 and other eicosanoids in exhaled breath condensate for assessing lung inflammation. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 (2009) 1272–1280.

    Article  CAS  PubMed  Google Scholar 

  22. Hou, X., Shen, Y.H., Li, C., Wang, F., Zhang, C., Bu, P. and Zhang, Y. PPARalpha agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity. Biochem. Biophys. Res. Commun. 394 (2010) 653–659.

    Article  CAS  PubMed  Google Scholar 

  23. Mendler, A.N., Hu, B., Prinz, P.U., Kreutz, M., Gottfried, E. and Noessner, E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int. J. Cancer 131 (2012) 633–640.

    Article  CAS  PubMed  Google Scholar 

  24. Lim, W.S., Ng, D.L., Kor, S.B., Wong, H.K., Tengku-Muhammad, T.S., Choo, Q.C. and Chew, C.H. Tumour necrosis factor alpha down-regulates the expression of peroxisome proliferator activated receptor alpha (PPARalpha) in human hepatocarcinoma HepG2 cells by activation of NF-kappaB pathway. Cytokine 61 (2013) 266–274.

    Article  CAS  PubMed  Google Scholar 

  25. Ammazzalorso, A., D’Angelo, A., Giancristofaro, A., De Filippis, B., Di Matteo, M., Fantacuzzi, M., Giampietro, L., Linciano, P., Maccallini, C. and Amoroso, R. Fibrate-derived N-(methylsulfonyl)amides with antagonistic properties on PPARalpha. Eur. J. Med. Chem. 58 (2012) 317–322.

    Article  CAS  PubMed  Google Scholar 

  26. el Azzouzi, H., Leptidis, S., Bourajjaj, M., van Bilsen, M., da Costa Martins, P.A. and De Windt, L.J. MEK1 inhibits cardiac PPARalpha activity by direct interaction and prevents its nuclear localization. PLoS One 7 (2012) e36799.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sozio, M.S., Lu, C., Zeng, Y., Liangpunsakul, S. and Crabb, D.W. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 301 (2011) G739–747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tung, S., Shi, Y., Wong, K., Zhu, F., Gorczynski, R., Laister, R.C., Minden, M., Blechert, A.K., Genzel, Y., Reichl, U. and Spaner, D.E. PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia. Blood 122 (2013) 969–980.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Poupot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poupot, M., Boissard, F., Betous, D. et al. The PPARα pathway in Vγ9Vδ2 T cell anergy. Cell Mol Biol Lett 19, 649–658 (2014). https://doi.org/10.2478/s11658-014-0218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0218-0

Keywords