Skip to main content

Rapid proliferation of activated lymph node CD4+ T cells is achieved by greatly curtailing the duration of gap phases in cell cycle progression

Abstract

Peripheral T cells are in G0 phase and do not proliferate. When they encounter an antigen, they enter the cell cycle and proliferate in order to initiate an active immune response. Here, we have determined the first two cell cycle times of a leading population of CD4+ T cells stimulated by PMA plus ionomycin in vitro. The first cell cycle began around 10 h after stimulation and took approximately 16 h. Surprisingly, the second cell cycle was extremely rapid and required only 6 h. T cells might have a unique regulatory mechanism to compensate for the shortage of the gap phases in cell cycle progression. This unique feature might be a basis for a quick immune response against pathogens, as it maximizes the rate of proliferation.

Abbreviations

CFSE:

carboxyfluorescein diacetate succinimidyl ester

EdU:

5-ethynyl-2′-deoxyuridine

FBS:

fetal bovine serum

MHC:

major histocompatibility complex

PKC:

protein kinase C

PMA:

phorbol 12-myristate 13-acetate

TCR:

T cell receptor

References

  1. Lea, N.C., Orr, S.J., Stoeber, K., Williams, G.H., Lam, E.W.F., Ibrahim, M.A.A., Ghulam, J.M. and Thomas, N.S.B. Commitment point during G0—>G1 that controls entry into the cell cycle. Mol. Cell. Biol. 23 (2003) 2351–2361.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Jenkins, M.K. and Moon, J.J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188 (2012) 4135–4140.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Yarke, C.A., Dalheimer, S.L., Zhang, N., Catron, D.M., Jenkins, M.K. and Mueller, D.L. Proliferating CD4+ T cells undergo immediate growth arrest upon cessation of TCR signaling in vivo. J. Immunol. 180 (2008) 156–162.

    CAS  PubMed  Article  Google Scholar 

  4. Inobe, M. and Schwartz, R.H. CTLA-4 engagement acts as a brake on CD4+ T cell proliferation and cytokine production but is not required for tuning T cell reactivity in adaptive tolerance. J. Immunol. 173 (2004) 7239–7248.

    CAS  PubMed  Article  Google Scholar 

  5. Singh, N.J. and Schwartz, R.H. The strength of persistent antigenic stimulation modulates adaptive tolerance in peripheral CD4+ T cells. J. Exp. Med. 198 (2003) 1107–1117.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Ando, Y., Yasuoka, C., Mishima, T., Ikematsu, T., Uede, T., Matsunaga, T. and Inobe, M. Concanavalin A-mediated T cell proliferation is regulated by herpes virus entry mediator costimulatory molecule. In Vitro Cell. Dev. Biol. Anim. 50 (2014) 313–320.

    CAS  PubMed  Article  Google Scholar 

  7. Abe, R., Vandenberghe, P., Craighead, N., Smoot, D.S., Lee, K.P. and June, C.H. Distinct signal transduction in mouse CD4+ and CD8+ splenic T cells after CD28 receptor ligation. J. Immunol. 154 (1995) 985–997.

    CAS  PubMed  Google Scholar 

  8. Unkeless, J.C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150 (1979) 580–596.

    CAS  PubMed  Article  Google Scholar 

  9. Hirata, A., Inada, K-I., Tsukamoto, T., Sakai, H., Mizoshita, T., Yanai, T., Masegi, O., Goto, H., Inagaki, M. and Tatematsu, M. Characterization of a monoclonal antibody, HTA28, recognizing a histone H3 phosphorylation site as a useful marker of M-phase cells. J. Histochem. Cytochem. 52 (2004) 1503–1509.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M. Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T. and Inagaki, M. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274 (1999) 25543–25549.

    CAS  PubMed  Article  Google Scholar 

  11. Toba, K., Winton, E.F., Koike, T. and Shibata, A. Simultaneous three-color analysis of the surface phenotype and DNA-RNA quantitation using 7-amino-actinomycin D and pyronin Y. J. Immunol. Methods 182 (1995) 193–207.

    CAS  PubMed  Article  Google Scholar 

  12. Crissman, H.A., Darzynkiewicz, Z., Tobey, R.A. and Steinkamp, J.A. Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228 (1985) 1321–1324.

    CAS  PubMed  Article  Google Scholar 

  13. Buck, S.B., Bradford, J., Gee, K.R., Agnew, B.J., Clarke, S.T. and Salic, A. Detection of S-phase cell cycle progression using 5-ethynyl-2“-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2-”deoxyuridine antibodies. BioTechniques 44 (2008) 927–929.

    CAS  PubMed  Article  Google Scholar 

  14. Sojka, D.K., Bruniquel, D., Schwartz, R.H. and Singh, N.J. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition. J. Immunol. 172 (2004) 6136–6143.

    CAS  PubMed  Article  Google Scholar 

  15. Kirschner, M., Newport, J. and Gerhart, J. The timing of early developmental events in Xenopus. Trends Genet. 1 (1985) 41–47.

    Article  Google Scholar 

  16. Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I.M., Nakayama, K. and Nakayama, K.I. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204 (2007) 2875–2888.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Li, G., Domenico, J., Lucas, J.J. and Gelfand, E.W. Identification of multiple cell cycle regulatory functions of p57Kip2 in human T lymphocytes. J. Immunol. 173 (2004) 2383–2391.

    CAS  PubMed  Article  Google Scholar 

  18. Mohapatra, S., Agrawal, D. and Pledger, W.J. p27Kip1 regulates T cell proliferation. J. Biol. Chem. 276 (2001) 21976–2183.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Inobe.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishima, T., Toda, S., Ando, Y. et al. Rapid proliferation of activated lymph node CD4+ T cells is achieved by greatly curtailing the duration of gap phases in cell cycle progression. Cell Mol Biol Lett 19, 638–648 (2014). https://doi.org/10.2478/s11658-014-0219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-014-0219-z

Keywords

  • CD4+ T cells
  • Cell cycle
  • G0/G1 transition
  • Gap phase
  • In vitro
  • PMA plus ionomycin
  • Proliferation
  • T cell activation