Skip to main content

Evaluation of the potential of alkylresorcinols as superoxide anion scavengers and sox-regulon modulators using nitroblue tetrazolium and bioluminescent cell-based assays

Abstract

The antioxidant activities of five alkylresorcinol (AR) homologs with alkyl chains of 1, 3, 5 6 and 12 carbon atoms were studied using molecular and cellular assays for superoxide anions (\(O_2 ^{. - } \)). The effect of ARs as superoxide anion scavengers was assessed using the photochemical reaction of spontaneous photo-reduced flavin re-oxidation. In this system, ARs reaction with \(O_2 ^{. - } \) produced dye derivatives, as C6- and C12-AR prevented the \(O_2 ^{. - } \)-induced conversion of nitroblue tetrazolium into formazan in AR-containing mixtures. The influence of ARs on soxS gene expression and bacterial cell viability was studied with the luminescent Escherichia coli K12 MG1655 psoxS’::luxCDABE-AmpR strain, showing low basal light emission. This increased significantly during paraquatinduced oxidative stress as a consequence of the simultaneous transcription of soxS-gene and lux-gene fusion. ARs with alkyl chains containing 5–12 carbon atoms at concentrations of 0.1–1.0 μM weakly induced soxS-gene expression, whereas 1–10 mM repressed it. This respectively increased or decreased the bacterial cell resistance to \(O_2 ^{. - } \)-related oxidative stress. AR derivatives lost their protective activity from reactions with superoxide anions, which required increased soxS gene expression for cell viability. These results show the dual nature of ARs, which possess direct antioxidant properties and the ability to indirectly regulate the activity of cellular antioxidative defense mechanisms.

Abbreviations

A:

absorbance

AR:

alkylresorcinol

C1-AR:

methylbenzenediol

C3-AR:

propylbenzenediol

C5-AR:

pentylbenzenediol

C6-AR:

hexylbenzenediol

C12-AR:

dodecylbenzenediol

CFU:

colony-forming units

Eh:

redox potential

Fz:

formazan

NBT:

nitroblue tetrazolium

\(O_2 ^{. - } \) :

superoxide anion

OD:

optical density

RLU:

relative light units

ROS:

reactive oxygen species

PQ:

paraquat

SOD:

superoxide dismutase

TEMED:

tetramethylethanediamine

References

  1. El-Bahr, S.M. Biochemistry of free radicals and oxidative stress. Sci. Int. 1 (2013) 111–117.

    Article  Google Scholar 

  2. Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide Annu. Rev. Biochem. 77 (2008) 755–776.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57 (2003) 395–418.

    CAS  PubMed  Article  Google Scholar 

  4. Miller, A.F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586 (2012) 585–595. DOI: 10.1016/j.febslet.2011.10.048.

    CAS  PubMed  Article  Google Scholar 

  5. Broering, E.P., Truong, P.T., Gale, E.M. and Harrop, T.C. Synthetic analogues of nickel superoxide dismutase: a new role for nickel in biology. Biochemistry 52 (2013) 4–18. DOI: 10.1021/bi3014533.

    CAS  PubMed  Article  Google Scholar 

  6. Demple, B. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon — a review. Gene 179 (1996) 53–57.

    CAS  PubMed  Article  Google Scholar 

  7. Touati, D. Sensing and protecting against superoxide stress in Escherichia coli — how many ways are there to trigger soxRS response?. Redox Rep. 5 (2000) 287–293.

    CAS  PubMed  Article  Google Scholar 

  8. Krapp, A.R., Humbert, M.V. and Carrillo, N. The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content. Microbiology 157 (2011) 957–965. DOI: 10.1099/mic.0.039461-0.

    CAS  PubMed  Article  Google Scholar 

  9. Benov, L. How superoxide radical damages the cell. Protoplasma 217 (2001) 33–36.

    CAS  PubMed  Article  Google Scholar 

  10. Kodali, V.P. and Sen, R. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3 (2008) 245–251.

    CAS  PubMed  Article  Google Scholar 

  11. Pereira, D.M., Valentao, P., Pereira, J.A. and Andrade, P.B. Phenolics: from chemistry to biology. Molecules 14 (2009) 2202–2211. DOI:10.3390/molecules14062202.

    CAS  Article  Google Scholar 

  12. Cyboran, S., Oszmianski, J. and Kleszczynska, H. Interaction between plant polyphenols and the erythrocyte membrane. Cell. Mol. Biol. Lett. 17 (2012) 77–88. DOI: 10.2478/s11658-011-0038-4

    CAS  PubMed  Article  Google Scholar 

  13. Kozubek, A. and Tyman, J.H.P. Resorcinolic lipids, the natural nonisoprenoic amphiphiles and their biological activity. Chem. Rev. 99 (1999) 1–26.

    CAS  PubMed  Article  Google Scholar 

  14. Stasiuk, M. and Kozubek, A. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 67 (2010) 841–860.

    CAS  PubMed  Article  Google Scholar 

  15. Singh, U.S., Scannell, R.T., An, H., Carter, B.J. and Hecht, S.M. DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu (II), and alkali. J. Am. Chem. Soc. 118 (1995) 12691–12699.

    Article  Google Scholar 

  16. Nienartowicz, B. and Kozubek, A. Antioxidant activity of cereal bran resorcinolic lipids. Pol. J. Food Nutr. Sci. 2 (1993) 51–60.

    CAS  Google Scholar 

  17. Struski, D.G. and Kozubek, A. Cereal grain alk(en)ylresorcinols protect lipids against ferrous ions-induced peroxidation. Z. Naturforsch. 47 (1992) 41–46.

    Google Scholar 

  18. Kamnev, A.A., Dykman, R.L., Kovacs, K., Pankratov, A.N., Tugarova, A.V., Homonnay, Z. and Kuzmann, E. Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities. Struct. Chem. 25 (2014) 649–657. DOI: 10.1007/s11224-013-0367-1.

    CAS  Article  Google Scholar 

  19. Deszcz, L. and Kozubek, A. Inhibition of soybean lipoxygenases by resorcinolic lipids from cereal bran. Cell. Mol. Biol. Lett. 2 (1997) 213–222.

    CAS  Google Scholar 

  20. Deryabin, D.G., Davydova, O.K., Gryazeva, I.V. and El’-Registan, G.I. Involvement of alkylhydroxybenzenes in the Escherichia coli response to the lethal effect of UV irradiation. Microbiologiya 81 (2012) 168–177.

    CAS  Google Scholar 

  21. Miche, L., Belkin, S., Rozen, R. and Balandreau, J. Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ. Microbiol. 5 (2003) 403–411.

    CAS  PubMed  Article  Google Scholar 

  22. Konanykhina, I.A., Shanenko, E.F., Loiko, N.G., Nikolaev, Yu.A. and El-Registan G.I. Regulatory effect of microbial alkyloxybenzenes of different structure on the stress response of yeast. Appl. Biochem. Microbiol. 44 (2008) 518–522.

    CAS  Article  Google Scholar 

  23. Stepanenko, I.Iu., Strakhovskaia, M.G., Belenikina, N.S., Nikolaev, Yu.A., Miliukin, A.L., Kozlova, A.N., Revina, A.A. and El-Registan, G.I. Protection of Saccharomyces cerevisiae against oxidative and radiationcaused damage by alkyl hydroxybenzenes. Mikrobiologiya 73 (2004) 204–210.

    Google Scholar 

  24. Giannopolitis, G.N. and Ries, S.K. In vitro production of superoxide radical from paraquat and its interactions with monuron and diuron. Weed Sci. 25 (1977) 298–303.

    CAS  Google Scholar 

  25. Lu, J.-M., Lin, P.H., Yao, Q. and Chen, C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol. Med. 14 (2010) 840–860.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Kotova, V.Yu., Manukhov, I.V. and Zavilgelskii, G.B. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl. Biochem. Microbiol. 46 (2010) 781–788.

    CAS  Article  Google Scholar 

  27. Kubo, I., Masuoka, N., Ha, T.J. and Tsujimoto, K. Antioxidant activity of anacardic acids. Food Chem. 99 (2006) 555–562.

    CAS  Article  Google Scholar 

  28. Korycinska, M., Czelna, K., Jaromin, A. and Kozubek, A. Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products. Food Chem. 116 (2009) 1013–1018.

    CAS  Article  Google Scholar 

  29. Parikka, K., Rowland, I.R., Welch, R.W. and Wahala, K. In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J. Agric. Food Chem. 54 (2006) 1646–1650.

    CAS  PubMed  Article  Google Scholar 

  30. Hladyszowski, J., Zubik, L. and Kozubek, A. Quantum mechanical and experimental oxidation studies of pentadecylresorcinol, olovetol, orcinol and resorcinol. Free Radical Res. 28 (1998) 359–368.

    CAS  Article  Google Scholar 

  31. Trevisan, M.T.S., Pfundstein, B., Haubner, R., Wurtele, G., Spiegelhalder, B., Bartsch, H. and Owen, R.W. Characterization of alkylphenols in cashew (Anacardium occcidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 44 (2006) 188–197.

    CAS  PubMed  Article  Google Scholar 

  32. Rodrigues, F.H.A., Feitosa, J.P.A., Ricardo, N.M.P., de Franca, F.C.F. and Carioca, J.O.B. Antioxidant activity of cashew shell nut liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1, 4-polyisoprene. J. Braz. Chem. Soc. 17 (2006) 265–271.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii G. Deryabin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gryazeva, I.V., Davydova, O.K. & Deryabin, D.G. Evaluation of the potential of alkylresorcinols as superoxide anion scavengers and sox-regulon modulators using nitroblue tetrazolium and bioluminescent cell-based assays. Cell Mol Biol Lett (2014). https://doi.org/10.2478/s11658-014-0222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.2478/s11658-014-0222-4

Keywords

  • Alkylresorcinols
  • Reactive oxygen species
  • Superoxide anion
  • soxS gene
  • Reporter luxCDABE gene
  • Bioluminescence