Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.
CAS
PubMed
Google Scholar
Crick F. Central dogma of molecular biology. Nature. 1970;227:561–3.
Article
CAS
PubMed
Google Scholar
Cobb M. 60 years ago, Francis crick changed the logic of biology. PLoS Biol. 2017;15:e2003243.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hambly K, Danzer J, Muskal S, Debe DA. Interrogating the druggable genome with structural informatics. Mol Divers. 2006;10:273–81.
Article
CAS
PubMed
Google Scholar
Russ AP, Lampel S. The druggable genome: an update. Drug Discov Today. 2005;10:1607–10.
Article
PubMed
Google Scholar
Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30.
Article
CAS
PubMed
Google Scholar
Dimitrov DS. Therapeutic proteins. Methods Mol Biol. 2012;899:1–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dimitrov DS, Marks JD. Therapeutic antibodies: current state and future trends--is a paradigm change coming soon? Methods Mol Biol. 2009;525:1–27 xiii.
Article
CAS
PubMed
Google Scholar
Franco-Serrano L, Huerta M, Hernandez S, Cedano J, Perez-Pons J, Pinol J, et al. Multifunctional proteins: involvement in human diseases and targets of current drugs. Protein J. 2018;37:444–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006;2:711–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.
Article
CAS
PubMed
Google Scholar
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.
Article
CAS
PubMed
Google Scholar
Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001;98:9742–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeVincenzo JP, Wilkinson T, Vaishnaw A, Cehelsky J, Meyers R, Nochur S, et al. Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2010;182:1305–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107:8800–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14:843–56.
Article
CAS
PubMed
Google Scholar
Ackley KL. Are we there yet? An update on oligonucleotide drug development. Chim Oggi Chem Today. 2016;34:Xxxv–Xxxviii.
Google Scholar
Haussecker D. The business of RNAi therapeutics in 2012. Mol Ther Nucleic Acids. 2012;1:e8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conde J, Artzi N. Are RNAi and miRNA therapeutics truly dead? Trends Biotechnol. 2015;33:141–4.
Article
CAS
PubMed
Google Scholar
Kristen AV, Ajroud-Driss S, Conceicao I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9:5–23.
Article
PubMed
Google Scholar
Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.
Article
CAS
PubMed
Google Scholar
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
Article
CAS
PubMed
Google Scholar
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.
Article
CAS
PubMed
Google Scholar
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartoszewska S, Cabaj A, Dabrowski M, Collawn JF, Bartoszewski R. miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB J. 2019;33:11541–54.
Article
PubMed
PubMed Central
Google Scholar
Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res. 2019. https://doi.org/10.1016/j.trsl.2019.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miroshnichenko S, Patutina O. Enhanced inhibition of tumorigenesis using combinations of miRNA-targeted therapeutics. Front Pharmacol. 2019;10:488.
Article
PubMed
PubMed Central
Google Scholar
Bansal P, Kumar A, Chandna S, Arora M, Bansal R. Targeting miRNA for therapeutics using a Micronome based method for identification of miRNA-mRNA pairs and validation of key regulator miRNA. Methods Mol Biol. 1823;2018:185–95.
Google Scholar
Li DJ, Sun CC. Editorial: towards MiRNA based therapeutics for lung Cancer. Curr Pharm Des. 2018;23:5971–2.
Article
PubMed
CAS
Google Scholar
Wu M, Wang G, Tian W, Deng Y, Xu Y. MiRNA-based therapeutics for lung Cancer. Curr Pharm Des. 2018;23:5989–96.
Article
PubMed
CAS
Google Scholar
Wen MM. Getting miRNA therapeutics into the target cells for neurodegenerative diseases: a mini-review. Front Mol Neurosci. 2016;9:129.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu K, Liu D, Lai H, Li J, Wang C. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J Thorac Dis. 2016;8:E918–E27.
Article
PubMed
PubMed Central
Google Scholar
Kouri FM, Ritner C, Stegh AH. miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA-based precision therapeutics. Cell Cycle. 2015;14:3794–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23.
Article
PubMed
Google Scholar
Bernardo BC, Ooi JY, Lin RC, McMullen JR. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7:1771–92.
Article
CAS
PubMed
Google Scholar
Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet. 2015;6:232.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond). 2014;127:351–65.
Article
CAS
Google Scholar
Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.
Article
CAS
PubMed
Google Scholar
Ford LP. Using synthetic miRNA mimics for diverting cell fate: a possibility of miRNA-based therapeutics? Leuk Res. 2006;30:511–3.
Article
CAS
PubMed
Google Scholar
Bartoszewska S, Kamysz W, Jakiela B, Sanak M, Kroliczewski J, Bebok Z, et al. miR-200b downregulates CFTR during hypoxia in human lung epithelial cells. Cell Mol Biol Lett. 2017;22:23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Wozniak M, Lejnowski D, et al. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cell Mol Biol Lett. 2016;21:16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov. 2012;11:909–22.
Article
CAS
PubMed
Google Scholar
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17–29.
Article
PubMed
CAS
Google Scholar
Almeida R, Allshire RC. RNA silencing and genome regulation. Trends Cell Biol. 2005;15:251–8.
Article
CAS
PubMed
Google Scholar
Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett. 2018;23:45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
Article
CAS
PubMed
Google Scholar
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125:887–901.
Article
CAS
PubMed
Google Scholar
Wang X, Xu X, Ma Z, Huo Y, Xiao Z, Li Y, et al. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA. 2011;17:1511–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:5–20.
Article
CAS
PubMed
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Article
CAS
PubMed
Google Scholar
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.
Article
CAS
PubMed
Google Scholar
Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32.
Article
CAS
PubMed
Google Scholar
Davis BN, Hata A. Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal. 2009;7:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires ago catalysis. Nature. 2010;465:584–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.
Article
CAS
PubMed
Google Scholar
Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010;38:789–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.
Article
CAS
PubMed
Google Scholar
Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell. 2002;13:1338–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143–9.
Article
CAS
PubMed
Google Scholar
van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 2002;21:6915–24.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.
Article
CAS
PubMed
Google Scholar
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kroliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2018;640:66–72.
Article
CAS
PubMed
Google Scholar
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7(4):170019. https://doi.org/10.1098/rsob.170019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–73.
Article
CAS
PubMed
Google Scholar
Benhamed M, Herbig U, Ye T, Dejean A, Bischof O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol. 2012;14:266–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science. 2007;315:97–100.
Article
CAS
PubMed
Google Scholar
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.
Article
PubMed Central
CAS
Google Scholar
Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67:657–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30:106–14.
Article
CAS
PubMed
Google Scholar
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20:515–24.
Article
CAS
PubMed
Google Scholar
Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev. 2003;17:438–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lippman Z, May B, Yordan C, Singer T, Martienssen R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 2003;1:E67.
Article
PubMed
PubMed Central
Google Scholar
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41:324–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rojas-Rios P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development. 2018;145:dev161786.
Article
PubMed
CAS
Google Scholar
Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature. 2010;467:1128–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, et al. Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep. 2015;12:1205–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivagurunathan S, Arunachalam JP, Chidambaram S. PIWI-like protein, HIWI2 is aberrantly expressed in retinoblastoma cells and affects cell-cycle potentially through OTX2. Cell Mol Biol Lett. 2017;22:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ponnusamy M, Yan KW, Liu CY, Li PF, Wang K. PIWI family emerging as a decisive factor of cell fate: an overview. Eur J Cell Biol. 2017;96:746–57.
Article
CAS
PubMed
Google Scholar
Burroughs AM, Iyer LM, Aravind L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and mediator-dependent modulation of transcription in eukaryotes. Biol Direct. 2013;8:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kwon C, Tak H, Rho M, Chang HR, Kim YH, Kim KT, et al. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun. 2014;446:218–23.
Article
CAS
PubMed
Google Scholar
Suzuki R, Honda S, Kirino Y. PIWI expression and function in Cancer. Front Genet. 2012;3:204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, et al. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep. 2015;5:10423.
Article
PubMed
PubMed Central
Google Scholar
Mei Y, Wang Y, Kumari P, Shetty AC, Clark D, Gable T, et al. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun. 2015;6:7316.
Article
CAS
PubMed
Google Scholar
Mei Y, Clark D, Mao L. Novel dimensions of piRNAs in cancer. Cancer Lett. 2013;336:46–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gebert M, Bartoszewska S, Janaszak-Jasiecka A, Moszynska A, Cabaj A, Kroliczewski J, et al. PIWI proteins contribute to apoptosis during the UPR in human airway epithelial cells. Sci Rep. 2018;8:16431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saberi F, Kamali M, Najafi A, Yazdanparast A, Moghaddam MM. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell Mol Biol Lett. 2016;21:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.
Article
CAS
PubMed
Google Scholar
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erhard F, Zimmer R. Classification of ncRNAs using position and size information in deep sequencing data. Bioinformatics. 2010;26:i426–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szell M, Bata-Csorgo Z, Kemeny L. The enigmatic world of mRNA-like ncRNAs: their role in human evolution and in human diseases. Semin Cancer Biol. 2008;18:141–8.
Article
CAS
PubMed
Google Scholar
Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, et al. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS One. 2011;6:e27288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol. 2013;425:3582–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Zhang Y, Xie SJ, Xu SJ, Zhou H, Qu LH. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps during heart development. Cardiology. 2013;126:62.
Article
CAS
Google Scholar
Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460:479–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci. 2018;75:177–91.
Article
CAS
PubMed
Google Scholar
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.
Article
PubMed
CAS
Google Scholar
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell. 2010;40:205–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett. 2019;24:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu G, Zhang Y. MicroRNA-340-5p suppresses non-small cell lung cancer cell growth and metastasis by targeting ZNF503. Cell Mol Biol Lett. 2019;24:34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu Y, Lin L, Xia L. MiR-107 function as a tumor suppressor gene in colorectal cancer by targeting transferrin receptor 1. Cell Mol Biol Lett. 2019;24:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu L, Zuo Y, Xu Y, Zhang Z, Li Y, Pang J. MiR-613 inhibits proliferation and invasion and induces apoptosis of rheumatoid arthritis synovial fibroblasts by direct down-regulation of DKK1. Cell Mol Biol Lett. 2019;24:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai Y, Li Y. Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5. Cell Mol Biol Lett. 2019;24:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Sun Z, Chen T, Pan J, Shen Y, Chen X, et al. The role of miR-431-5p in regulating pulmonary surfactant expression in vitro. Cell Mol Biol Lett. 2019;24:25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun L, Lian JX, Meng S. MiR-125a-5p promotes osteoclastogenesis by targeting TNFRSF1B. Cell Mol Biol Lett. 2019;24:23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng Q, Wang Y, Gao J, Yan Z, Li Z, Zou X, et al. miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett. 2019;24:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Bao Y, Yang GK, Wan J, Du LJ, Ma ZH. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27. Cell Mol Biol Lett. 2019;24:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma F, Lin P, Chen Q, Lu X, Zhang YE, Wu CI. Direct measurement of pervasive weak repression by microRNAs and their role at the network level. BMC Genomics. 2018;19:362.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. Embo Molec Med. 2014;6:851–64.
Article
CAS
Google Scholar
Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 2007;18:363–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HY, Zhou K, Smith AM, Noland CL, Doudna JA. Differential roles of human dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 2013;41:6568–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, et al. A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science. 2010;328:1694–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23:222–6.
Article
CAS
PubMed
Google Scholar
Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005;23:227–31.
Article
CAS
PubMed
Google Scholar
Hefner E, Clark K, Whitman C, Behlke MA, Rose SD, Peek AS, et al. Increased potency and longevity of gene silencing using validated dicer substrates. J Biomol Tech. 2008;19:231–7.
CAS
PubMed
PubMed Central
Google Scholar
Snead NM, Wu X, Li A, Cui Q, Sakurai K, Burnett JC, et al. Molecular basis for improved gene silencing by dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res. 2013;41:6209–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parmar R, Willoughby JL, Liu J, Foster DJ, Brigham B, Theile CS, et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem. 2016;17:985–9.
Article
CAS
PubMed
Google Scholar
Ly S, Navaroli DM, Didiot MC, Cardia J, Pandarinathan L, Alterman JF, et al. Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Res. 2017;45:15–25.
Article
CAS
PubMed
Google Scholar
Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell. 2012;150:895–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, et al. Single-stranded siRNAs activate RNAi in animals. Cell. 2012;150:883–94.
Article
CAS
PubMed
Google Scholar
Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A, et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 2010;38:e3.
Article
CAS
PubMed
Google Scholar
Shi B, Ma C, Liu G, Guo Y. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. Cell Mol Biol Lett. 2019;24:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terasawa K, Shimizu K, Tsujimoto G. Synthetic pre-miRNA-based shRNA as potent RNAi triggers. J Nucleic Acids. 2011;2011:131579.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev. 2015;81:142–60.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172:962–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velu CS, Grimes HL. Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. Methods Mol Biol. 2012;928:185–95.
CAS
PubMed
PubMed Central
Google Scholar
Esau CC. Inhibition of microRNA with antisense oligonucleotides. Methods. 2008;44:55–60.
Article
CAS
PubMed
Google Scholar
Wang JY, Cheng H, Zhang HY, Ye YQ, Feng Q, Chen ZM, et al. Suppressing microRNA-29c promotes biliary atresia-related fibrosis by targeting DNMT3A and DNMT3B. Cell Mol Biol Lett. 2019;24:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong ZH, Zhou F, Shi C, Xiang T, Zhou CK, Wang QQ, et al. miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cell Mol Biol Lett. 2019;24:9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Hu W, Li G, Guo Y, Wan Z, Yu J. Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13. Cell Mol Biol Lett. 2019;24:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G, et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res. 2009;37:70–7.
Article
CAS
PubMed
Google Scholar
Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.
Article
CAS
PubMed
Google Scholar
Torres AG, Fabani MM, Vigorito E, Gait MJ. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved northern-blot-based method for miRNA detection. RNA. 2011;17:933–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35:2885–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staton AA, Giraldez AJ. Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc. 2011;6:2035–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem. 2007;7:651–60.
Article
CAS
PubMed
Google Scholar
Hudziak RM, Barofsky E, Barofsky DF, Weller DL, Huang SB, Weller DD. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev. 1996;6:267–72.
Article
CAS
PubMed
Google Scholar
Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta. 1999;1489:141–58.
Article
CAS
PubMed
Google Scholar
Arora V, Devi GR, Iversen PL. Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol. 2004;5:431–9.
Article
CAS
PubMed
Google Scholar
Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30.
Article
CAS
PubMed
Google Scholar
Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23:73–82.
Article
CAS
PubMed
Google Scholar
Chaudhary A, Srivastava S, Garg S. Development of a software tool and criteria evaluation for efficient design of small interfering RNA. Biochem Biophys Res Commun. 2011;404:313–20.
Article
CAS
PubMed
Google Scholar
Zhong R, Kim J, Kim HS, Kim M, Lum L, Levine B, et al. Computational detection and suppression of sequence-specific off-target phenotypes from whole genome RNAi screens. Nucleic Acids Res. 2014;42:8214–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hajalirezay Yazdi S, Paryan M, Mohammadi-Yeganeh S. An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer. Cell Mol Biol Lett. 2018;23:51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003;278:44312–9.
Article
CAS
PubMed
Google Scholar
Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–7.
Article
CAS
PubMed
Google Scholar
Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:1892–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holen T, Moe SE, Sorbo JG, Meza TJ, Ottersen OP, Klungland A. Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Res. 2005;33:4704–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eastman P, Shi J, Ramsundar B, Pande VS. Solving the RNA design problem with reinforcement learning. PLoS Comput Biol. 2018;14:e1006176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Petri S, Meister G. siRNA design principles and off-target effects. Methods Mol Biol. 2013;986:59–71.
Article
CAS
PubMed
Google Scholar
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias (vol 115, pg 209, 2003). Cell. 2003;115:505.
Article
CAS
Google Scholar
Angart P, Vocelle D, Chan C, Walton SP. Design of siRNA therapeutics from the molecular scale. Pharmaceuticals (Basel). 2013;6:440–68.
Article
CAS
Google Scholar
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208.
Article
CAS
PubMed
Google Scholar
Wang X, Varma RK, Beauchamp L, Magdaleno S, Sendera TJ. Selection of hyperfunctional siRNAs with improved potency and specificity. Nucleic Acids Res. 2009;37:e152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–78.
Article
CAS
PubMed
Google Scholar
Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res. 2008;36:7100–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki T, Kawai T. Chapter one - discrimination between self and non-self-nucleic acids by the innate immune system. In: Vanpouille-Box C, Galluzzi L, editors. International review of cell and molecular biology. Volume 344. Cambridge: Academic Press; 2019. p. 1–30.
Google Scholar
Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70.
Article
CAS
PubMed
Google Scholar
Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23:457–62.
Article
CAS
PubMed
Google Scholar
Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA. 2006;12:988–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, et al. Off-target effects by siRNA can induce toxic phenotype. RNA. 2006;12:1188–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sioud M. Overcoming the challenges of siRNA activation of innate immunity: design better therapeutic siRNAs. Methods Mol Biol. 2015;1218:301–19.
Article
CAS
PubMed
Google Scholar
Robbins M, Judge A, MacLachlan I. siRNA and innate immunity. Oligonucleotides. 2009;19:89–102.
Article
CAS
PubMed
Google Scholar
Goodchild A, Nopper N, King A, Doan T, Tanudji M, Arndt GM, et al. Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol. 2009;10:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bramsen JB, Kjems J. Engineering small interfering RNAs by strategic chemical modification. Methods Mol Biol. 2013;942:87–109.
Article
CAS
PubMed
Google Scholar
Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.
Article
CAS
PubMed
Google Scholar
Chen L, Liu P, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science. 2017;355:752–6.
Article
CAS
PubMed
Google Scholar
Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA. 2012;3:601–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A, et al. miRBase Tracker: keeping track of microRNA annotation changes. Database (Oxford). 2014;2014:bau080.
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D62.
Article
CAS
PubMed
Google Scholar
Caffrey DR, Zhao J, Song Z, Schaffer ME, Haney SA, Subramanian RR, et al. SiRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS One. 2011;6:e21503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. RNA. 2004;10:766–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 2009;37:2867–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 2008;18:305–19.
Article
CAS
PubMed
Google Scholar
Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release. 2014;195:49–54.
Article
CAS
PubMed
Google Scholar
Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Structure of the guide-strand-containing argonaute silencing complex. Nature. 2008;456:209–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balaratnam S, West N, Basu S. A piRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Nucleic Acids Res. 2018;46:10635–48.
CAS
PubMed
PubMed Central
Google Scholar
Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9:1034–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13:494–505.
Article
CAS
PubMed
Google Scholar
Cekaite L, Furset G, Hovig E, Sioud M. Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol. 2007;365:90–108.
Article
CAS
PubMed
Google Scholar
Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, et al. Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology. 2010;215:559–69.
Article
CAS
PubMed
Google Scholar
Odadzic D, Bramsen JB, Smicius R, Bus C, Kjems J, Engels JW. Synthesis of 2′-O-modified adenosine building blocks and application for RNA interference. Bioorg Med Chem. 2008;16:518–29.
Article
CAS
PubMed
Google Scholar
Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31:589–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48:4247–53.
Article
CAS
PubMed
Google Scholar
Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers. 2010;7:536–42.
Article
CAS
PubMed
Google Scholar
Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res. 2003;31:3185–93.
Article
PubMed
PubMed Central
Google Scholar
Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F, et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol BioSyst. 2010;6:862–70.
Article
CAS
PubMed
Google Scholar
Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y, Adami R, et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 2011;39:1823–32.
Article
CAS
PubMed
Google Scholar
Campbell JM, Bacon TA, Wickstrom E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods. 1990;20:259–67.
Article
CAS
PubMed
Google Scholar
Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24:374–87.
Article
CAS
PubMed
Google Scholar
Braasch DA, Paroo Z, Constantinescu A, Ren G, Oz OK, Mason RP, et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett. 2004;14:1139–43.
Article
CAS
PubMed
Google Scholar
Schwarz DS, Tomari Y, Zamore PD. The RNA-induced silencing complex is a Mg2+−dependent endonuclease. Curr Biol. 2004;14:787–91.
Article
CAS
PubMed
Google Scholar
Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342:919–27.
Article
CAS
PubMed
Google Scholar
Shmushkovich T, Monopoli KR, Homsy D, Leyfer D, Betancur-Boissel M, Khvorova A, et al. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Res. 2018;46:10905–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ligtenberg MA. Pico de Coana Y, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, et al. self-delivering RNAi targeting PD-1 improves tumor-specific T cell functionality for adoptive cell therapy of malignant melanoma. Mol Ther. 2018;26:1482–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meade BR, Gogoi K, Hamil AS, Palm-Apergi C, van den Berg A, Hagopian JC, et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol. 2014;32:1256–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen PE. Peptide nucleic acid (PNA) a structural DNA mimic. Prog Biophys Mol Biol. 1996;65:Sb103.
Google Scholar
Nielsen PE, Egholm M, Buchardt O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem. 1994;5:3–7.
Article
CAS
PubMed
Google Scholar
Willoughby JLS, Chan A, Sehgal A, Butler JS, Nair JK, Racie T, et al. Evaluation of GalNAc-siRNA conjugate activity in pre-clinical animal models with reduced Asialoglycoprotein receptor expression. Mol Ther. 2018;26:105–14.
Article
CAS
PubMed
Google Scholar
Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 2017;45:10969–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–55.
Article
CAS
PubMed
Google Scholar
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35:222–9.
Article
CAS
PubMed
Google Scholar
Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 2006;34:e53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia XG, Zhou H, Xu Z. Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques. 2006;41:64–8.
Article
CAS
PubMed
Google Scholar
Sun D, Melegari M, Sridhar S, Rogler CE, Zhu L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques. 2006;41:59–63.
Article
CAS
PubMed
Google Scholar
Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. 2002;99:5515–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Schoer RA, Egan JE, Hannon GJ, Mittal V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:1927–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.
Article
CAS
PubMed
Google Scholar
Couto LB, High KA. Viral vector-mediated RNA interference. Curr Opin Pharmacol. 2010;10:534–42.
Article
CAS
PubMed
Google Scholar
Brandt MR, Kirste AG, Pozzuto T, Schubert S, Kandolf R, Fechner H, et al. Adenovirus vector-mediated RNA interference for the inhibition of human parvovirus B19 replication. Virus Res. 2013;176:155–60.
Article
CAS
PubMed
Google Scholar
Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59:75–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16:948–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehlert EM, Eggers R, Niclou SP, Verhaagen J. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci. 2010;11:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12:329–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms. 2019;7(8):216.
Article
PubMed Central
Google Scholar
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther. 2014;25:265–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baden LR, Liu J, Li H, Walsh S, Johnson J, Milner D, et al. A phase1 clinical trial to evaluate the safety, mucosal and innate immunity of adenovirus type 26 HIV-1 vaccine in healthy, HIV-1 uninfected adults. AIDS Res Hum Retrovir. 2011;27:A124.
Google Scholar
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17:253–63.
Article
CAS
PubMed
Google Scholar
Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther. 2009;9:459–74.
Article
CAS
PubMed
Google Scholar
Seow Y, Wood MJ. Biological gene delivery vehicles: beyond viral vectors. Mol Ther. 2009;17:767–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polansky H, Schwab H. Latent viruses can cause disease by disrupting the competition for the limiting factor p300/CBP. Cell Mol Biol Lett. 2018;23:56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine. 2015;10:1399–414.
CAS
PubMed
PubMed Central
Google Scholar
Wyrozumska P, Meissner J, Toporkiewicz M, Szarawarska M, Kuliczkowski K, Ugorski M, et al. Liposome-coated lipoplex-based carrier for antisense oligonucleotides. Cancer Biol Ther. 2015;16:66–76.
Article
CAS
PubMed
Google Scholar
Meissner JM, Toporkiewicz M, Czogalla A, Matusewicz L, Kuliczkowski K, Sikorski AF. Novel antisense therapeutics delivery systems: in vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J Control Release. 2015;220:515–28.
Article
CAS
PubMed
Google Scholar
Wyrozumska P, Stebelska K, Grzybek M, Sikorski AF. Synthetic vectors for genetic drug delivery. In: Mozafari MR, editor. Nanocarrier technologies: frontiers of nanotherapy. Dordrecht: Springer Netherlands; 2006. p. 139–74. https://doi.org/10.1007/978-1-4020-5041-1_9.
Chapter
Google Scholar
Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61:721–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullis PR, Hope MJ. Lipid nanoparticle Systems for Enabling Gene Therapies. Mol Ther. 2017;25:1467–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Eng. 2012;51:8529–33.
Article
CAS
Google Scholar
Neuberg P, Kichler A. Recent developments in nucleic acid delivery with polyethylenimines. Adv Genet. 2014;88:263–88.
Article
CAS
PubMed
Google Scholar
Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.
Article
CAS
PubMed
Google Scholar
Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep. 2018;8:9410.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng L. Dendrimers as nanovectors for Rna delivery in gene therapy. Eur J Pharm Sci. 2013;50:E31.
Google Scholar
Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.
Article
CAS
PubMed
Google Scholar
Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv. 2013;10:1687–98.
Article
CAS
PubMed
Google Scholar
Liu X, Li G, Su Z, Jiang Z, Chen L, Wang J, et al. Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol Rep. 2013;29:1387–94.
Article
CAS
PubMed
Google Scholar
Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res. 2013;19:6193–204.
Article
CAS
PubMed
Google Scholar
Siu KS, Chen D, Zheng X, Zhang X, Johnston N, Liu Y, et al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014;35:3435–42.
Article
CAS
PubMed
Google Scholar
Chien C-S, Chiou S-H. Abstract 3321: Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. Cancer Res. 2012;72:3321.
Google Scholar
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3:1023–35.
Article
CAS
PubMed
Google Scholar
Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng. 2008;99:975–85.
Article
CAS
PubMed
Google Scholar
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomedicine. 2014;10:689–702.
Article
CAS
PubMed
Google Scholar
Bitar A, Ahmad NM, Fessi H, Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov Today. 2012;17:1147–54.
Article
CAS
PubMed
Google Scholar
Chen Y, Wang X, Liu T, Zhang DS, Wang Y, Gu H, et al. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int J Nanomedicine. 2015;10:2579–94.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Gu H, Zhang DS, Li F, Liu T, Xia W. Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials. 2014;35:10058–69.
Article
CAS
PubMed
Google Scholar
Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134:577–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A. 2007;104:4095–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM. Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules. 2019;24(14):2570.
Article
CAS
PubMed Central
Google Scholar
Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;35:4333–44.
Article
CAS
PubMed
Google Scholar
Kawakami E, Kawai N, Kinouchi N, Mori H, Ohsawa Y, Ishimaru N, et al. Local applications of myostatin-siRNA with atelocollagen increase skeletal muscle mass and recovery of muscle function. PLoS One. 2013;8:e64719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yhee JY, Song S, Lee SJ, Park SG, Kim KS, Kim MG, et al. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release. 2015;198:1–9.
Article
CAS
PubMed
Google Scholar
Schafer J, Hobel S, Bakowsky U, Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials. 2010;31:6892–900.
Article
PubMed
CAS
Google Scholar
Jang YL, Yun UJ, Lee MS, Kim MG, Son S, Lee K, et al. Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression. Int J Pharm. 2012;434:488–93.
Article
CAS
PubMed
Google Scholar
Alshamsan A, Hamdy S, Samuel J, El-Kadi AO, Lavasanifar A, Uludag H. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials. 2010;31:1420–8.
Article
CAS
PubMed
Google Scholar
Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 2013;27:504–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103:2746–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nowakowski TJ, Rani N, Golkaram M, Zhou HR, Alvarado B, Huch K, et al. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci. 2018;21:1784–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.
Article
CAS
PubMed
Google Scholar
McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24:1005–15.
Article
CAS
PubMed
Google Scholar
Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.
Article
CAS
PubMed
Google Scholar
Zhou JH, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181–202.
Article
CAS
PubMed
Google Scholar
Cuellar TL, Barnes D, Nelson C, Tanguay J, Yu SF, Wen X, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43:1189–203.
Article
CAS
PubMed
Google Scholar
Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release. 2010;143:335–43.
Article
CAS
PubMed
Google Scholar
Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther. 2006;13:644–70.
Article
CAS
PubMed
Google Scholar
Xu C, Haque F, Jasinski DL, Binzel DW, Shu D, Guo P. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018;414:57–70.
Article
CAS
PubMed
Google Scholar
Yang X, Fan B, Gao W, Li L, Li T, Sun J, et al. Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect. Int J Nanomedicine. 2018;13:4333–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durak-Kozica M, Baster Z, Kubat K, Stepien E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018;23:57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dowdy SF, Levy M. RNA therapeutics (almost) comes of age: targeting, delivery and endosomal escape. Nucleic Acid Ther. 2018;28:107–8.
Article
CAS
PubMed
Google Scholar
Smith SA, Selby LI, Johnston APR, Such GK. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem. 2019;30:263–72.
Article
CAS
PubMed
Google Scholar
Cupic KI, Rennick JJ, Johnston AP, Such GK. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanomedicine (London). 2019;14:215–23.
Article
CAS
Google Scholar
Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al. Cell-penetrating mechanism of intracellular targeting albumin: contribution of macropinocytosis induction and endosomal escape. J Control Release. 2019;304:156–63.
Article
CAS
PubMed
Google Scholar
Degors IMS, Wang C, Rehman ZU, Zuhorn IS. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc Chem Res. 2019;52:1750–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens JL. Future of toxicology--mechanisms of toxicity and drug safety: where do we go from here? Chem Res Toxicol. 2006;19:1393–401.
Article
CAS
PubMed
Google Scholar
Pentin J, Smith J. Drug calculations: are they safer with or without a calculator? Br J Nurs. 2006;15:778–81.
Article
PubMed
Google Scholar
Smith DA, Schmid EF. Drug withdrawals and the lessons within. Curr Opin Drug Discov Devel. 2006;9:38–46.
CAS
PubMed
Google Scholar
Visconti JA, Smith MC. The economics of adverse drug reactions--case studies. Ann Pharmacother. 2006;40:529–36.
Article
PubMed
Google Scholar
Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006;103:17337–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: small activating RNA drug for hepatocellular carcinoma. Curr Pharm Biotechnol. 2018;19:611–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24:489–97.
Article
CAS
PubMed
Google Scholar
Bartoszewski R, Kroliczewski J, Piotrowski A, Jasiecka AJ, Bartoszewska S, Vecchio-Pagan B, et al. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cell Mol Biol Lett. 2016;21:23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Jiang R. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. Sci World J. 2013;2013:675851.
Google Scholar
Shastry BS. SNPs in disease gene mapping, medicinal drug development and evolution. J Hum Genet. 2007;52:871–80.
Article
CAS
PubMed
Google Scholar
Brinster R, Scherer D, Lorenzo BJ. Optimal selection of genetic variants for adjustment of population stratification in European association studies. Brief Bioinform. 2019. https://doi.org/10.1093/bib/bbz023.
Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95:1.22.1–1.22.23.
Article
Google Scholar
Lacour A, Schuller V, Drichel D, Herold C, Jessen F, Leber M, et al. Novel genetic matching methods for handling population stratification in genome-wide association studies. BMC Bioinformatics. 2015;16:84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan W, Liang L, Boehnke M, Abecasis GR. Genotype-based matching to correct for population stratification in large-scale case-control genetic association studies. Genet Epidemiol. 2009;33:508–17.
Article
PubMed
PubMed Central
Google Scholar
Tebbutt SJ, He JQ, Burkett KM, Ruan J, Opushnyev IV, Tripp BW, et al. Microarray genotyping resource to determine population stratification in genetic association studies of complex disease. Biotechniques. 2004;37:977–85.
Article
CAS
PubMed
Google Scholar
Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD. siRNA, miRNA, and shRNA: in vivo applications. J Dent Res. 2008;87:992–1003.
Article
CAS
PubMed
Google Scholar
Zhu J, Chen G, Zhu S, Li S, Wen Z, Bin L, et al. Identification of tissue-specific protein-coding and noncoding transcripts across 14 human tissues using RNA-seq. Sci Rep. 2016;6:28400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwekel JC, Vijay V, Desai VG, Moland CL, Fuscoe JC. Age and sex differences in kidney microRNA expression during the life span of F344 rats. Biol Sex Differ. 2015;6:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu Y, Zhang H, Cai Q, Tang D, Wang G, Liu T, et al. Integrated mRNA and miRNA expression profile analyses reveal the potential roles of sex-biased miRNA-mRNA pairs in gonad tissues of the Chinese concave-eared torrent frog (Odorrana tormota). J Exp Zool B Mol Dev Evol. 2019;332:69–80.
Article
CAS
PubMed
Google Scholar
Guo L, Zhang Q, Ma X, Wang J, Liang T. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci Rep. 2017;7:39812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14:618–30.
Article
CAS
PubMed