Abramson, H.A., Moyer, L.S. and Goris, M.H. Electrophoresis of proteins and the chemistry of cell surfaces, Reinhold NY 1942, 1-307.
Blanco, S., Clifton, M.J., Joly, J.L. and Peltre, G. Protein separation by electrophoresis in nonsieving amphoteric medium. Electrophoresis
17 (1996) 1126–1133.
Article
PubMed
CAS
Google Scholar
Chiari, M. and Righetti, P.G. New types of separation matrices for electrophoresis. Electrophoresis
16 (1995) 1815–1829.
Article
PubMed
CAS
Google Scholar
Roman, M.C. and Brown, P.R. Free-flow electrophoresis as a preparative separation technique. Anal. Chem.
66 (1994) 86–94.
Google Scholar
Wang, Y., Hancock, W.S., Weber, G., Eckerskorn, C. and Palmer-Toy, D. Free-flow electrophoresis coupled with liquid chromatography/mass spectrometry for a proteomic study of the human cell line (K562/CR3). J. Chromatogr. A
1053 (2004) 269–278.
Article
PubMed
CAS
Google Scholar
Zakharov, S.F., Chang, H.T. and Chrambach, A. Reproducibility of mobility in gel electrophoresis. Electrophoresis
17 (1996) 84–90.
Article
PubMed
CAS
Google Scholar
Ambrose, E.J. Cell Electrophoresis. J&A Churchill Ltd., London 1965.
Google Scholar
Chaubal, K.A. Cell electrophoretic mobility as an aid to study biological systems, in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 515–526.
Google Scholar
Fürész, J., Pál, K., Budavári, I. and Lapis, K. The physicochemical properties of tumor cells with different metastatic potential. Neoplasma
32 (1985) 689–693.
PubMed
Google Scholar
Korohoda, W. Electrophoretic studies on plant cells III. Electrophoretic mobilities of cell-forms of Myxomycetae Physarum nudum Macbride. Folia Biologica 11 (1963) 465–472.
Google Scholar
Mehrishi, J.N. and Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis
23 (2002) 1984–1994.
Article
PubMed
CAS
Google Scholar
Mori, T. and Shimizu, M. The changes of lymphocyte electrophoretic mobility in cancer patient. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 355–366.
Google Scholar
Preece, A.W. and Sablovic, D. in: Cell electrophoresis: clinical application and methodology. North-Holland Publishing company, Amsterdam 1979.
Google Scholar
Abercrombie, M. and Ambrose, E.J. The surface properties of cancer cells: a review. Cancer Res.
22 (1962) 332–245.
Google Scholar
Jovtchev, S., Djenev, I., Stoeff, S. and Stoylov, S. Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids and Surfaces A: Physicochem. Engineer. Asp.
164 (2000) 95–104.
Article
CAS
Google Scholar
Vransky, V.K. Die zellelektrophorese. in: Fortschritte der experimentellen und theoretischen Biophysik Band 18. (Beier, W., Ed.) Leipzig 1974.
Masui, M., Takata, H. and Kominami, T. Cell adhesion and negative cell surface charges in embryonic cells of the starfish Asterina pectinifera. Electrophoresis
23 (2002) 2087–2095.
Article
PubMed
CAS
Google Scholar
Platsoucas, C.D., Good, R.A. and Gupta, S. Separation of human T lymphocyte subpopulations (Tμ, Tγ) by density gradient electrophoresis. Proc. Natl. Acad. Sci. USA
76 (1979) 1972–1976.
Article
PubMed
CAS
Google Scholar
Rychly, J., Anders, O., Eggers, G. and Schulz, M. Electrophoretic mobility distribution of cells in leukaemia. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 477–483.
Google Scholar
Heidrich, H.G. and Hannig, K. Separation of cell population by free-flow electrophoresis. Methods Enzymol.
171 (1989) 513–531.
Article
PubMed
CAS
Google Scholar
Rutishauser, U.S. and Edelman, G.M. Fractionation and Manipulation of Cells with Chemically Modified Fibers and Surfaces. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 193–228.
Google Scholar
Sengeløv, H. and Borregaard, N. Free-flow electrophoresis in subcellular fractionation of human neutrophils. J. Immunol. Methods
232 (1999) 145–152.
Article
PubMed
Google Scholar
Neu, B., Armstrong, J.K., Fisher, T.C. and Meiselman, H.J. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis. Biorheology
40 (2003) 477–487.
PubMed
CAS
Google Scholar
Seaman, G.V.F. and Cook, G.M.W. Modification of the electrophoretic behavior of the erythrocyte by chemical and enzymatic methods. in: Cell Electrophoresis (Ambrose, E.J., Ed.). J&A Churchill Ltd., London 1965, 48–65.
Google Scholar
Wilson, W.W., Wade, M.M., Holman, S.C. and Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods
43 (2001) 153–164.
Article
PubMed
CAS
Google Scholar
Catsimpoolas, N. and Griffith, A.L. Transient electrophoresis and sedimentation analyses of cells in density gradients. In: Methods of Cell Separation, vol. 2. (Catsimpoolas, N., Ed.) Plenum Press NY 1979, 1–63.
Google Scholar
Pertoft, H. and Lauren, T.C. Isopycinc separation of cells and cell organelles by centrifugation in modified colloidal silica gradients. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 25–65.
Google Scholar
PretlowII, T.G. and Pretlow, T.P. Separation of viable cells by velocity sedimentation in an isokinetic gradient of ficoll in tissue culture medium. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 171–191.
Google Scholar
Akiba, T., Nishi, A., Takaoki, M., Matsumiya, H., Tomita, F., Usami, R. and Nagaoka, S. Separation of bacterial cells by free flow electrophoresis under microgravity: a result of the spacelab — Japan project on space shuttle flight sts — 47. Acta Astron.
36 (1995) 177–181.
Article
CAS
Google Scholar
Zeiller, K., Löser, R., Pascher, G. and Hannig, K. Free-flow electrophoresis II: Analysis of the method with respect to preparative cell separation. Hoppe-Seyler’s Z Physiol. Chem.
356 (1975) 1225–1244.
PubMed
CAS
Google Scholar
Eggleton, P. Separation of cells using free flow electrophoresis. in: Cell Separation. A Practical Approach. (Fisher, D., Francis, G.E. and Rickwood, D., Ed.) Oxford University Press, Oxford, New York, Tokyo 1998, 213–252.
Google Scholar
Hansen, E. Preparative free flow electrophoresis of lymphoid cells: A review. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY) 1985, 287–304.
Google Scholar
Kuhn, R., Wagner, H., Mosher, R.A. and Thormann, W. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis. Electrophoresis
8 (1987) 503–508.
Article
CAS
Google Scholar
Wallach, D.F.H. and Lin, P.S. Plasma membrane fractionation. Biochim. Biophys. Acta
300 (1973) 211–254.
PubMed
CAS
Google Scholar
Morré, D.J., Morré, D.M. and van Alstine, J.M. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis. J. Chromatogr. B
711 (1998) 203–215.
Google Scholar
Toner, M. and Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng.
7 (2005) 77–103.
Article
PubMed
CAS
Google Scholar
Barshtein, G., Tamir, I. and Yedgar, S. Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation. Eur. Biophys. J.
27 (1998) 177–181.
Article
PubMed
CAS
Google Scholar
Bäumler, H., Donath, E., Krabi, A., Knippel, W., Budde, A. and Kiesewetter, H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology
33 (1996) 333–351.
Article
PubMed
Google Scholar
Gardner, B. The effect of dextrans on zeta potential. Proc. Soc. Exp. Biol. Med.
131 (1969) 1115–1118.
PubMed
CAS
Google Scholar
Ichiki, T., Ujiie, T., Shinbashi, S., Okuda, T. and Horiike, Y. Immunoelectrophoresis of red blood cells performed on microcapillary chips. Electrophoresis
23 (2002) 2029–2034.
Article
PubMed
CAS
Google Scholar
Lu, W.H., Deng, W.H., Liu, S.T., Chen, T.B. and Ra, P.F. Capillary electrophoresis of erythrocytes. Anal. Biochem.
314 (2003) 194–198.
Article
PubMed
CAS
Google Scholar
Omasu, F., Nakano, Y. and Ichik, T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis
26 (2005) 1163–1167.
Article
PubMed
CAS
Google Scholar
Walter, H. and Widen, K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta
1234 (1995) 184–190.
Article
PubMed
Google Scholar
Bäumler, H., Neu, B., Donath, E. and Kiesewetter, H. Basic phenomena of red blood cell rouleaux formation. Biorheology
36 (1999) 439–442.
PubMed
Google Scholar
Schüt, W., Thomaneck, U., Knippel, E., Rychly, J. and Klinkmann, H. Suitability of automated single cell electrophoresis (ASCE) for biomedical and clinical applications: General remarks. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY) 1985, 313–332.
Google Scholar
Seaman, G.V.F. Electrokinetic behavior of red cells. in: The Red Blood Cells vol. 2. (Mac, D., Surgenor, N., Ed.), Academic Press, New York 1975, 1–135.
Google Scholar
Slivinsky, G.G., Hymer, W.C., Bauer, J. and Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis
18 (1997) 1109–1119.
Article
PubMed
CAS
Google Scholar
Josefowicz, J.Y. Electrophoretic light scattering and its application to the study of cells. in: Methods of Cell Separation, vol. 2. (Catsimpoolas, N., Ed.) Plenum Press NY 1979, 67–91.
Google Scholar
Walter, H. Cell partitioning in two-polymer aqueous phase systems. TIBS (1978) 97-100.
Hannig, K., Kowalski, M., Klock, G., Zimmermann, U. and Mang, V. Free-flow electrophoresis under microgravity: evidence for enhanced resolution of cell separation. Electrophoresis
11 (1990) 600–604.
Article
PubMed
CAS
Google Scholar
Todd, P. Microgravity cell electrophoresis experiments on the space shuttle: a 1984 overview. in: Cell Electrophoresis. (Schütt, W., Klinkmann H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 3–19.
Google Scholar
Patel, D., Ford, T.C. and Rickwood, D. Fractionation of cells by sedimentation methods. in: Cell Separation. A Practical Approach. (Fisher, D., Francis, G.E. and Rickwood, D., Ed.) Oxford University Press, Oxford, New York, Tokyo 1998, 43–89.
Google Scholar
Malström, P., Nelson, K., Jönsson, A., Sjögren, H.O., Walter, H. and Albertsson, P.A. Separation of rat leukocytes by countercurrent distribution in aqueous two-phase systems. Cell Immunol.
37 (1978) 409–421.
Article
Google Scholar
Arnold, K., Herrmann, A., Pratsch, L. and Gawrisch, K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta
815 (1985) 515–518.
Article
PubMed
CAS
Google Scholar
Hansen, P.L., Cohen, J.A., Podgornik, R. and Parsegian, V.A. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling lows. Biophys. J.
84 (2003) 350–355.
Article
PubMed
CAS
Google Scholar
Sabolovic, D., Sestier, C., Perrotin, P., Guillet, R., Tefi, M. and Boynard, M. Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods. Electrophoresis
21 (2000) 301–306.
Article
PubMed
CAS
Google Scholar
Higuchi, A., Yamamiya, S., Yoon, B.O., Sakurai, M. and Hara, M. Peripheral blood cell separation through surface modified polyurethane membranes. J. Biomed. Materials Res. A
68A (2004) 34–42.
Article
CAS
Google Scholar
Di Basio, A. and Cametti, C. Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane. Bioelectrochemistry
65 (2005) 163–169.
Article
CAS
Google Scholar