- Published:
A new method for the preperative and analytical electrophoresis of cells
Cellular & Molecular Biology Letters volume 11, pages 579–593 (2006)
Abstract
In this paper, a new method is described for the horizontal electrophoresis of cells on a density cushion under near-isopycnic conditions. When cell sedimentation is minimized, the electrophoresis of red blood cells (RBC) used as model cells within an anti-convective porous matrix (with pores over 300 μm in diameter) was capable of separating a mixture of human and chicken RBC according to their electrophoretic mobilities. Samples taken from the separated RBC bands show over 90% purity for each species. The simultaneous electrophoresis of several RBC samples carried out under identical conditions permitted the use of comparative data based on the electrophoretic mobility of cells which differ in their surface properties. We believe that this relatively simple system, in which cell sedimentation and convection are minimized, has the potential to be modified and adapted for the separation of other cell types/organelles.
Abbreviations
- dcEF:
-
direct current electric field
- MW:
-
molecular weight
- PBS:
-
phosphate buffered saline
- PEG:
-
polyethylene glycol
- RBC:
-
red blood cells
References
Abramson, H.A., Moyer, L.S. and Goris, M.H. Electrophoresis of proteins and the chemistry of cell surfaces, Reinhold NY 1942, 1-307.
Blanco, S., Clifton, M.J., Joly, J.L. and Peltre, G. Protein separation by electrophoresis in nonsieving amphoteric medium. Electrophoresis 17 (1996) 1126–1133.
Chiari, M. and Righetti, P.G. New types of separation matrices for electrophoresis. Electrophoresis 16 (1995) 1815–1829.
Roman, M.C. and Brown, P.R. Free-flow electrophoresis as a preparative separation technique. Anal. Chem. 66 (1994) 86–94.
Wang, Y., Hancock, W.S., Weber, G., Eckerskorn, C. and Palmer-Toy, D. Free-flow electrophoresis coupled with liquid chromatography/mass spectrometry for a proteomic study of the human cell line (K562/CR3). J. Chromatogr. A 1053 (2004) 269–278.
Zakharov, S.F., Chang, H.T. and Chrambach, A. Reproducibility of mobility in gel electrophoresis. Electrophoresis 17 (1996) 84–90.
Ambrose, E.J. Cell Electrophoresis. J&A Churchill Ltd., London 1965.
Chaubal, K.A. Cell electrophoretic mobility as an aid to study biological systems, in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 515–526.
Fürész, J., Pál, K., Budavári, I. and Lapis, K. The physicochemical properties of tumor cells with different metastatic potential. Neoplasma 32 (1985) 689–693.
Korohoda, W. Electrophoretic studies on plant cells III. Electrophoretic mobilities of cell-forms of Myxomycetae Physarum nudum Macbride. Folia Biologica 11 (1963) 465–472.
Mehrishi, J.N. and Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23 (2002) 1984–1994.
Mori, T. and Shimizu, M. The changes of lymphocyte electrophoretic mobility in cancer patient. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 355–366.
Preece, A.W. and Sablovic, D. in: Cell electrophoresis: clinical application and methodology. North-Holland Publishing company, Amsterdam 1979.
Abercrombie, M. and Ambrose, E.J. The surface properties of cancer cells: a review. Cancer Res. 22 (1962) 332–245.
Jovtchev, S., Djenev, I., Stoeff, S. and Stoylov, S. Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids and Surfaces A: Physicochem. Engineer. Asp. 164 (2000) 95–104.
Vransky, V.K. Die zellelektrophorese. in: Fortschritte der experimentellen und theoretischen Biophysik Band 18. (Beier, W., Ed.) Leipzig 1974.
Masui, M., Takata, H. and Kominami, T. Cell adhesion and negative cell surface charges in embryonic cells of the starfish Asterina pectinifera. Electrophoresis 23 (2002) 2087–2095.
Platsoucas, C.D., Good, R.A. and Gupta, S. Separation of human T lymphocyte subpopulations (Tμ, Tγ) by density gradient electrophoresis. Proc. Natl. Acad. Sci. USA 76 (1979) 1972–1976.
Rychly, J., Anders, O., Eggers, G. and Schulz, M. Electrophoretic mobility distribution of cells in leukaemia. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 477–483.
Heidrich, H.G. and Hannig, K. Separation of cell population by free-flow electrophoresis. Methods Enzymol. 171 (1989) 513–531.
Rutishauser, U.S. and Edelman, G.M. Fractionation and Manipulation of Cells with Chemically Modified Fibers and Surfaces. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 193–228.
Sengeløv, H. and Borregaard, N. Free-flow electrophoresis in subcellular fractionation of human neutrophils. J. Immunol. Methods 232 (1999) 145–152.
Neu, B., Armstrong, J.K., Fisher, T.C. and Meiselman, H.J. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis. Biorheology 40 (2003) 477–487.
Seaman, G.V.F. and Cook, G.M.W. Modification of the electrophoretic behavior of the erythrocyte by chemical and enzymatic methods. in: Cell Electrophoresis (Ambrose, E.J., Ed.). J&A Churchill Ltd., London 1965, 48–65.
Wilson, W.W., Wade, M.M., Holman, S.C. and Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (2001) 153–164.
Catsimpoolas, N. and Griffith, A.L. Transient electrophoresis and sedimentation analyses of cells in density gradients. In: Methods of Cell Separation, vol. 2. (Catsimpoolas, N., Ed.) Plenum Press NY 1979, 1–63.
Pertoft, H. and Lauren, T.C. Isopycinc separation of cells and cell organelles by centrifugation in modified colloidal silica gradients. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 25–65.
PretlowII, T.G. and Pretlow, T.P. Separation of viable cells by velocity sedimentation in an isokinetic gradient of ficoll in tissue culture medium. in: Methods of Cell Separation, vol. 1. (Catsimpoolas, N., Ed.) Plenum Press NY 1977, 171–191.
Akiba, T., Nishi, A., Takaoki, M., Matsumiya, H., Tomita, F., Usami, R. and Nagaoka, S. Separation of bacterial cells by free flow electrophoresis under microgravity: a result of the spacelab — Japan project on space shuttle flight sts — 47. Acta Astron. 36 (1995) 177–181.
Zeiller, K., Löser, R., Pascher, G. and Hannig, K. Free-flow electrophoresis II: Analysis of the method with respect to preparative cell separation. Hoppe-Seyler’s Z Physiol. Chem. 356 (1975) 1225–1244.
Eggleton, P. Separation of cells using free flow electrophoresis. in: Cell Separation. A Practical Approach. (Fisher, D., Francis, G.E. and Rickwood, D., Ed.) Oxford University Press, Oxford, New York, Tokyo 1998, 213–252.
Hansen, E. Preparative free flow electrophoresis of lymphoid cells: A review. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY) 1985, 287–304.
Kuhn, R., Wagner, H., Mosher, R.A. and Thormann, W. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis. Electrophoresis 8 (1987) 503–508.
Wallach, D.F.H. and Lin, P.S. Plasma membrane fractionation. Biochim. Biophys. Acta 300 (1973) 211–254.
Morré, D.J., Morré, D.M. and van Alstine, J.M. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis. J. Chromatogr. B 711 (1998) 203–215.
Toner, M. and Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7 (2005) 77–103.
Barshtein, G., Tamir, I. and Yedgar, S. Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation. Eur. Biophys. J. 27 (1998) 177–181.
Bäumler, H., Donath, E., Krabi, A., Knippel, W., Budde, A. and Kiesewetter, H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology 33 (1996) 333–351.
Gardner, B. The effect of dextrans on zeta potential. Proc. Soc. Exp. Biol. Med. 131 (1969) 1115–1118.
Ichiki, T., Ujiie, T., Shinbashi, S., Okuda, T. and Horiike, Y. Immunoelectrophoresis of red blood cells performed on microcapillary chips. Electrophoresis 23 (2002) 2029–2034.
Lu, W.H., Deng, W.H., Liu, S.T., Chen, T.B. and Ra, P.F. Capillary electrophoresis of erythrocytes. Anal. Biochem. 314 (2003) 194–198.
Omasu, F., Nakano, Y. and Ichik, T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis 26 (2005) 1163–1167.
Walter, H. and Widen, K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta 1234 (1995) 184–190.
Bäumler, H., Neu, B., Donath, E. and Kiesewetter, H. Basic phenomena of red blood cell rouleaux formation. Biorheology 36 (1999) 439–442.
Schüt, W., Thomaneck, U., Knippel, E., Rychly, J. and Klinkmann, H. Suitability of automated single cell electrophoresis (ASCE) for biomedical and clinical applications: General remarks. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY) 1985, 313–332.
Seaman, G.V.F. Electrokinetic behavior of red cells. in: The Red Blood Cells vol. 2. (Mac, D., Surgenor, N., Ed.), Academic Press, New York 1975, 1–135.
Slivinsky, G.G., Hymer, W.C., Bauer, J. and Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 18 (1997) 1109–1119.
Josefowicz, J.Y. Electrophoretic light scattering and its application to the study of cells. in: Methods of Cell Separation, vol. 2. (Catsimpoolas, N., Ed.) Plenum Press NY 1979, 67–91.
Walter, H. Cell partitioning in two-polymer aqueous phase systems. TIBS (1978) 97-100.
Hannig, K., Kowalski, M., Klock, G., Zimmermann, U. and Mang, V. Free-flow electrophoresis under microgravity: evidence for enhanced resolution of cell separation. Electrophoresis 11 (1990) 600–604.
Todd, P. Microgravity cell electrophoresis experiments on the space shuttle: a 1984 overview. in: Cell Electrophoresis. (Schütt, W., Klinkmann H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 3–19.
Patel, D., Ford, T.C. and Rickwood, D. Fractionation of cells by sedimentation methods. in: Cell Separation. A Practical Approach. (Fisher, D., Francis, G.E. and Rickwood, D., Ed.) Oxford University Press, Oxford, New York, Tokyo 1998, 43–89.
Malström, P., Nelson, K., Jönsson, A., Sjögren, H.O., Walter, H. and Albertsson, P.A. Separation of rat leukocytes by countercurrent distribution in aqueous two-phase systems. Cell Immunol. 37 (1978) 409–421.
Arnold, K., Herrmann, A., Pratsch, L. and Gawrisch, K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815 (1985) 515–518.
Hansen, P.L., Cohen, J.A., Podgornik, R. and Parsegian, V.A. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling lows. Biophys. J. 84 (2003) 350–355.
Sabolovic, D., Sestier, C., Perrotin, P., Guillet, R., Tefi, M. and Boynard, M. Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods. Electrophoresis 21 (2000) 301–306.
Higuchi, A., Yamamiya, S., Yoon, B.O., Sakurai, M. and Hara, M. Peripheral blood cell separation through surface modified polyurethane membranes. J. Biomed. Materials Res. A 68A (2004) 34–42.
Di Basio, A. and Cametti, C. Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane. Bioelectrochemistry 65 (2005) 163–169.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wilk, A., Rośkowicz, K. & Korohoda, W. A new method for the preperative and analytical electrophoresis of cells. Cell Mol Biol Lett 11, 579–593 (2006). https://doi.org/10.2478/s11658-006-0046-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11658-006-0046-y