Skip to main content

Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field

Abstract

Experiments on reversible and irreversible cell electroporation were carried out with an experimental setup based on a standard apparatus for horizontal electrophoresis, a syringe pump with regulated cell suspension flow velocity and a dcEF power supply. Cells in suspension flowing through an orifice in a barrier inserted into the electrophoresis apparatus were exposed to defined localized dcEFs in the range of 0–1000 V/cm for a selected duration in the range 10–1000 ms. This method permitted the determination of the viability of irreversibly electroperforated cells. It also showed that the uptake by reversibly electroperforated cells of fluorescent dyes (calcein, carboxyfluorescein, Alexa Fluor 488 Phalloidin), which otherwise do not penetrate cell membranes, was dependent upon the dcEF strength and duration in any given single electrical field exposure. The method yields reproducible results, makes it easy to load large volumes of cell suspensions with membrane non-penetrating substances, and permits the elimination of irreversibly electroporated cells of diameter greater than desired. The results concur with and elaborate on those in earlier reports on cell electroporation in commercially available electroporators. They proved once more that the observed cell perforation does not depend upon the thermal effects of the electric current upon cells. In addition, the method eliminates many of the limitations of commercial electroporators and disposable electroporation chambers. It permits the optimization of conditions in which reversible and irreversible electroporation are separated. Over 90% of reversibly electroporated cells remain viable after one short (less than 400 ms) exposure to the localized dcEF. Experiments were conducted with the AT-2 cancer prostate cell line, human skin fibroblasts and human red blood cells, but they could be run with suspensions of any cell type. It is postulated that the described method could be useful for many purposes in biotechnology and biomedicine and could help optimize conditions for in vivo use of both reversible and irreversible electroporation.

Abbreviations

DC:

direct current

dcEF:

direct current electric field

Eth BR2 :

ethidium bromide

FBS:

fetal bovine serum

FDA:

fluorescein diacetate

HSF:

human skin fibroblasts

IRE:

irreversible electroporation

PBS:

buffered saline without or without calcium and magnesium ions

RBC:

red blood cells

RE:

reversible electroporation

References

  1. Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E. Guide to Electroporation and Electrofusion, Academic Press Inc., San Diego, 1992.

    Google Scholar 

  2. Li, S. (Editor). Electroporation Protocols. Preclinical, and Clinical Gene Medicine, Humana Press, Totowa, New Jersey, 2008.

    Google Scholar 

  3. Neumann, E., Schaeffer-Ridder, M., Wang, Y. and Hofschneider, P.H. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1 (1982) 841–845.

    PubMed  CAS  Google Scholar 

  4. Gissel, H., Lee, R.C. and Gehl, J. Electroporation and cellular physiology. In: Clinical Aspects of Electroporation (Kee, S.T., Gehl, J. and Lee, E.W., Eds.), Springer, New York, 2011, 9–17.

    Chapter  Google Scholar 

  5. Kee, S.T., Gehl, J. and Lee, E.W. (Eds.). Clinical Aspects of Electroporation. Springer, New York, Dordrecht Heidelberg, London, 2011.

    Google Scholar 

  6. Miller, L., Leor, J. and Rubinsky, B. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4 (2005) 699–705.

    PubMed  Google Scholar 

  7. Rubinsky, J., Onik, G., Mikus, P. and Rubinsky, B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180 (2008) 2668–2674.

    PubMed  Article  Google Scholar 

  8. Rubinsky, B. (Ed.). Irreversible Electroporation, Springer-Verlag, Berlin, Heidelberg, 2010.

    Google Scholar 

  9. Chen, N., Garner, A.L., Chen, G., Jing, Y., Deng, Y., Swanson, R.J., Kolb, J.F., Beebe, S.J., Joshi, R.P. and Schoenbach, K.H. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem. Biophys. Res. Commun. 364 (2007) 220–225.

    PubMed  Article  CAS  Google Scholar 

  10. Raptis, L. and Firth, K.L. Electrode assemblies used for electroporation of cultured cells. Methods Mol. Biol. 423 (2008) 61–76.

    PubMed  Article  CAS  Google Scholar 

  11. Yumura, S., Matsuzaki, R. and Kitanishi-Yumura, T. Introduction of macromolecules into living Dictyostelium cells by electroporation. Cell Struct. Funct. 20 (1995) 185–190.

    PubMed  Article  CAS  Google Scholar 

  12. Djamgoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P. and Korohoda, W. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114 (2001) 2697–2705.

    PubMed  CAS  Google Scholar 

  13. Krzysiek-Mączka, G. and Korohoda, W. Surface anisotropy orients cell divisions in contact guided cells. Folia Biol. 56 (2008) 13–19.

    Article  Google Scholar 

  14. Karmiol, S. Cell isolation and selection. In: Methods of Tissue Engineering. (Atala, A. and Lanza, R., Eds), Academic Press, San Diego, 2002, 19–35.

    Google Scholar 

  15. Kemp, R.B., Meredith, R.W.J., Gamble, S. and Frost, M. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo. Cytobios 36 (1983) 153–159.

    PubMed  CAS  Google Scholar 

  16. Szydłowska, H., Zaporowska, E., Kuszlik-Jochym, K., Korohoda, W. and Branny, J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 16 (1978) 69–78.

    Google Scholar 

  17. Zaporowska-Siwiak, E., Michalik, M., Kajstura, J. and Korohoda, W. Density-dependent survival of Ehrlich ascites tumor cells in the presence of various substratum for energy metabolism. J. Cell Sci. 77 (1985) 75–85.

    PubMed  CAS  Google Scholar 

  18. Abramson, H.A., Moyer, L.S. and Gorin, M.H. Electrophoresis of Proteins and the Chemistry of Cell Surface. Reinhold Publ. Corp., NY, 1942.

    Google Scholar 

  19. Cooper, M.S. and Schliwa, M. Electrical and ionic controls of tissue cell locomotion in DC electric fields. J. Neurosci. Res. 13 (1985) 223–244.

    PubMed  Article  CAS  Google Scholar 

  20. Ericson, C.A. and Nuccitelli, R. Embryonic fibroblasts motility and orientation can be influenced by physiological electric fields. J. Cell Biol. 98 (1984) 296–307.

    Article  Google Scholar 

  21. Korohoda, W. Effect of electric field on cell movement. In: Tenth School on Biophysics of Membrane Transport. School proceedings, Poland, 1990, 178–191.

  22. Korohoda, W. and Kurowska, A. Quantitative estimations of the thresholds of electrotactic responses in Amoeba proteus. Acta Protozool. 7 (1970) 375–382.

    Google Scholar 

  23. Korohoda, W., Mycielska, M., Janda, E. and Madeja Z. Immediate and longterm galvanotactic responses of Ameba proteus to dc electric fields. Cell Motil. Cytoskeleton 45 (2000) 10–26.

    PubMed  Article  CAS  Google Scholar 

  24. Nuccitelli, R. and Erickson, C.A. Embryonic cell motility can be guided by physiological electric fields. Exp. Cell. Res. 147 (1983) 195–201.

    PubMed  Article  CAS  Google Scholar 

  25. Shafiee, H., Garcia, P.A. and Davlos, R.V. A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equations. J. Biomech. Eng. 131 (2009) 074509–074514.

    PubMed  Article  Google Scholar 

  26. Seaman, G.V.F. Electrophoresis using a cylindrical chamber. In: Cell Electrophoresis (Ambrose, E.J., Ed.), J.& A Churchill LTD., London, 1965, 4–21.

    Google Scholar 

  27. Pucihar, G., Kotnik, T., Kandušer, M. and Miklavčič, D. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54 (2001) 107–115.

    PubMed  Article  CAS  Google Scholar 

  28. Ammar, D.A., Noecker, R.J. and Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 27 (2010) 837–845.

    PubMed  Article  CAS  Google Scholar 

  29. Schlieve, C.R., Lieven, C.J. and Levin, L.A. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Invest. Ophthalmol. Vis. Sci. 47 (2006) 3878–3886.

    PubMed  Article  Google Scholar 

  30. Craiu, A. and Scadden, D. Flow electroporation with pulsed electric fields for purging tumor cells. Methods in Molecular Biology, The Humana Press, Totowa, NJ, 2008, 301–310.

    Google Scholar 

  31. Eppich, H.M., Foxall, R., Gaynor, K., Dombkowski, D., Miura, N. and Cheng, T. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat. Biotechnol. 18 (2000) 882–887.

    PubMed  Article  CAS  Google Scholar 

  32. Kotnik, T., Pucihar, G. and Miklavčič, D. The cell in the electric field. In: Clinical Aspects of Electroporation (Kee, S.T., Gehl, J. and Lee, E.W., Eds.), 2011, 19–43.

  33. Phez, E., Faurie, C., Golzio, M., Teissié, J. and Rols, M.P. New insight in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim. Biophys. Acta — Gen. Subjects 1724 (2005) 248–254.

    Article  CAS  Google Scholar 

  34. Teissié, J. and Rols, M. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann. N. Y. Acad. Sci. 720 (1994) 98–110.

    PubMed  Article  Google Scholar 

  35. Teissié, J., Escoffre, J.M., Rols, M.P. and Golzio, M. Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for theapeutical application. Radiol. Oncol. 42 (2008) 196–206.

    Article  Google Scholar 

  36. Tsong, T.Y. Time sequence of molecular events in electroporation. In: Guide to Electroporation and Electrofusion (Chang, D.C., Chassy, B.M., Saunders, J.A., Sowers, A.E., Eds.) Academic Press, Inc., San Diego, Calif., 1992, 47–61.

    Chapter  Google Scholar 

  37. Pucihar, G., Kotnik, T., Teissié, J. and Miklavčič, D. Electropermeabilization of dense cell suspensions. Eur. Biophys. J. 36 (2008) 173–185.

    Article  Google Scholar 

  38. Joshi, R.P. and Schoenbach, K.H. Bioelectric effects of intense ultrashort pulses. Crit. Rev. Biomed. Eng. 38 (2010) 255–304.

    PubMed  Article  CAS  Google Scholar 

  39. Long, G., Shires, P.K., Plescia, D., Beebe, S.J., Kolb, J.F. and Schoenbach, K.H. Targeted tissue ablation with nanosecond pulses. IEEE Trans. Biomech. Eng. 58 (2011) 2161–2167.

    Article  Google Scholar 

  40. Nuccitelli, R., Chen, X. and Pakhomov, G.A. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer 125 (2009) 438–445.

    PubMed  Article  CAS  Google Scholar 

  41. Ziv, R., Steinhardt, Y., Pelled, G., Gazit, D. and Rubinsky, B. Microelectroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed. Microdevices 11 (2009) 95–101.

    PubMed  Article  Google Scholar 

  42. Davalos, R.V. and Rubinsky, B. Temperature considerations during irreversible electroporation. Int. J. Heat Mass Transf. 51 (2008) 5617–5622.

    Article  Google Scholar 

  43. Fox, M.B., Esveld, D.C., Valero, A., Luttge, R., Mastwijk, H.C., Bartels, P.V., van der Berg, A. and Boom, R.M. Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385 (2006) 474–485.

    PubMed  Article  CAS  Google Scholar 

  44. Fabczak, S., Korohoda, W. and Walczak, T. Studies on the electrical stimulation of contraction in Spirostomum. I. Conditions of the quantitative measurements. Cytobiologie, Eur. J. Cell Biol. 7 (1973) 152–163.

    Google Scholar 

  45. Hui, S.W. Overview of drugs delivery and alternative methods to electroporation. In: Electroporation Protocols. Preclinical, and Clinical Gene Medicine. (Li, S., Ed.), Humana Press, Totowa, New Jersey, 2008, 91–107.

    Google Scholar 

  46. Sixou, S. and Teissié, J. Specific electropermeabilization of leukocytes in a blood sample and application to large volumes of cells. Biochim. Biophys. Acta 1028 (1990) 154–160.

    PubMed  Article  CAS  Google Scholar 

  47. Teissié, J. and Rols, M. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65 (1993) 409–413.

    PubMed  Article  Google Scholar 

  48. Towhidi, L., Kotnik, T., Pucihar, G., Firoozabadi, S.M.P., Mozdarani, H. and Miklavcic, D. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn. Biol. Med. 27 (2008) 372–385.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Włodzimierz Korohoda or Zbigniew Madeja.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korohoda, W., Grys, M. & Madeja, Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell Mol Biol Lett 18, 102–119 (2013). https://doi.org/10.2478/s11658-012-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0042-3

Key words

  • Irreversible electroporation
  • Reversible electroporation
  • Flow through electric field
  • Fluorescent dye loading
  • Cell viability
  • Direct current electric field
  • Focused electric field
  • Electrophoresis apparatus
  • Cell suspension electroporation system