Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers. Physiol (Bethesda Md). 2020;35:86–95.
CAS
Google Scholar
Hardeland R. COVID-19: Urgent Need to Redesign Anti-inflammatory Strategies for CNS Protection. Central nervous system agents in medicinal chemistry. 2022.
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising antineoplastic actions of melatonin. Front Pharmacol. 2018;9:1086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monayo SM, Liu X. The prospective application of melatonin in treating epigenetic dysfunctional diseases. Frontiers in Pharmacology. 2022:1593.
Korkmaz A, Reiter RJ. Epigenetic regulation: a new research area for melatonin? J Pineal Res. 2008;44:41–4.
CAS
PubMed
Google Scholar
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc. 1958;80:2587-.
Article
CAS
Google Scholar
Tan D-X, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ, et al. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci. 2014;15:15858–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ. Phytomelatonin: a review. J Exp Bot. 2009;60:57–69.
Article
CAS
PubMed
Google Scholar
Reiter RJ, Tan D-x, Manchester LC, Simopoulos AP, Maldonado MD, Flores LJ, et al. Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. World Rev Nutr Diet. 2007;97:211–30.
CAS
PubMed
Google Scholar
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59:403–19.
Article
CAS
PubMed
Google Scholar
Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences. 2017;114:E7997-E8006.
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. 2019;10:249.
Article
Google Scholar
Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175:3190–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skwarlo-Sonta K, Majewski P, Markowska M, Oblap R, Olszanska B. Bidirectional communication between the pineal gland and the immune system. Can J Physiol Pharmacol. 2003;81:342–9.
Article
CAS
PubMed
Google Scholar
Hardeland R. Aging, melatonin, and the pro-and anti-inflammatory networks. Int J Mol Sci. 2019;20:1223.
Article
CAS
PubMed Central
Google Scholar
Talib WH, Alsayed AR, Abuawad A, Daoud S, Mahmod AI. Melatonin in cancer treatment: Current knowledge and future opportunities. Molecules. 2021;26:2506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao L, Summers W, Xiang S, Yuan L, Dauchy RT, Reynolds A, et al. Melatonin Represses Metastasis in Her2-Postive Human Breast Cancer Cells by Suppressing RSK2 ExpressionMelatonin Represses Rsk of Breast Cancer Metastasis. Mol Cancer Res. 2016;14:1159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang SW, Tai HC, Tang CH, Lin LW, Lin TH, Chang AC, et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J Cell Physiol. 2021;236:3979–90.
Article
CAS
PubMed
Google Scholar
Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8:34–42.
Article
PubMed
Google Scholar
Becker-André M, Wiesenberg I, Schaeren-Wiemers N, André E, Missbach M, Saurat J-H, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994;269:28531–4.
Article
PubMed
Google Scholar
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear receptor for melatonin or not? Molecules. 2021;26:2693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutin JA, Ferry G. Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2? J Pharmacol Exp Ther. 2019;368:59–65.
Article
CAS
PubMed
Google Scholar
Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiology-Cell Physiol. 2001;280:C110-C8.
Article
Google Scholar
Jockers R, Maurice P, Boutin J, Delagrange P. Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol. 2008;154:1182–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–10.
Article
CAS
PubMed
Google Scholar
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351:152–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capote-Moreno A, Ramos E, Egea J, López-Muñoz F, Gil-Martín E, Romero A. Potential of melatonin as adjuvant therapy of oral cancer in the era of epigenomics. Cancers. 2019;11:1712.
Article
CAS
PubMed Central
Google Scholar
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99.
Article
CAS
PubMed
Google Scholar
Moosavi A, Ardekani AM. Role of epigenetics in biology and human diseases. Iran Biomed J. 2016;20:246.
PubMed
PubMed Central
Google Scholar
Bates SE. Epigenetic therapies for cancer. N Engl J Med. 2020;383:650–63.
Article
CAS
PubMed
Google Scholar
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target therapy. 2019;4:1–39.
Google Scholar
Surace AEA, Hedrich CM. The role of epigenetics in autoimmune/inflammatory disease. Frontiers in immunology. 2019:1525.
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol. 2020;98:12–22.
Article
CAS
PubMed
Google Scholar
Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metabol. 2019;29:1028–44.
Article
CAS
Google Scholar
Klutstein M, Nejman D, Greenfield R, Cedar H. DNA Methylation in Cancer and Aging. Cancer Res. 2016;76:3446–50.
Article
CAS
PubMed
Google Scholar
Angeloni A, Bogdanovic O. Sequence determinants, function, and evolution of CpG islands. Biochem Soc Trans. 2021;49:1109–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlberg C, Molnár F. Human epigenomics. Springer; 2018.
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.
Article
CAS
PubMed
Google Scholar
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.
Article
CAS
PubMed
Google Scholar
Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49:e322-e. doi:https://doi.org/10.1038/emm.2017.10.
Article
CAS
Google Scholar
Noroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spólnicka M, Branicki W, et al. DNA methylation-based age clocks: from age prediction to age reversion. Ageing Res Rev. 2021;68:101314.
Article
CAS
PubMed
Google Scholar
Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63:797–811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson AG. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol. 2008;79:1514–9.
Article
CAS
PubMed
Google Scholar
Magaña-Acosta M, Valadez-Graham V. Chromatin remodelers in the 3D nuclear compartment. Frontiers in Genetics. 2020:1344.
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.
Article
CAS
PubMed
Google Scholar
Ng H-H, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999;23:58–61.
Article
CAS
PubMed
Google Scholar
Fouse SD, Nagarajan RP, Costello JF. Genome-scale DNA methylation analysis. Epigenomics. 2010;2:105–17.
Article
CAS
PubMed
Google Scholar
Stoccoro A, Coppedè F. Mitochondrial DNA methylation and human diseases. Int J Mol Sci. 2021;22:4594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proceedings of the National Academy of Sciences. 2000;97:5237-42.
Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17:215–22.
Article
CAS
PubMed
Google Scholar
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.
Article
PubMed
PubMed Central
CAS
Google Scholar
Udali S, De Santis D, Ruzzenente A, Moruzzi S, Mazzi F, Beschin G, et al. DNA methylation and hydroxymethylation in primary colon cancer and synchronous hepatic metastasis. Front Genet. 2018;8:229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh C-L, Feinberg AP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 2002;62:6442–6.
CAS
PubMed
Google Scholar
Bjornsson HT, Brown LJ, Fallin MD, Rongione MA, Bibikova M, Wickham E, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99:1270–3.
Article
CAS
PubMed
Google Scholar
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Kato T, et al. MEG3-derived miR-493-5p overcomes the oncogenic feature of IGF2-miR-483 loss of imprinting in hepatic cancer cells. Cell Death Dis. 2019;10:1–16.
Article
CAS
Google Scholar
Murphy SK, Huang Z, Wen Y, Spillman MA, Whitaker RS, Simel LR, et al. Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol Cancer Res. 2006;4:283–92.
Article
CAS
PubMed
Google Scholar
Ulaner GA, Vu TH, Li T, Hu J-F, Yao X-M, Yang Y, et al. Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet. 2003;12:535–49.
Article
CAS
PubMed
Google Scholar
Vu TH, Nguyen AH, Hoffman AR. Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Hum Mol Genet. 2010;19:901–19.
Article
CAS
PubMed
Google Scholar
Leick MB, Shoff CJ, Wang EC, Congress JL, Gallicano GI. Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer. Am J stem cells. 2012;1:59.
CAS
PubMed
Google Scholar
Bhusari S, Yang B, Kueck J, Huang W, Jarrard DF. Insulin-like growth factor‐2 (IGF2) loss of imprinting marks a field defect within human prostates containing cancer. Prostate. 2011;71:1621–30.
Article
CAS
PubMed
Google Scholar
Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17:284–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13:497–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeschke J, Collignon E, Fuks F. Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr Opin Genet Dev. 2016;36:16–26.
Article
CAS
PubMed
Google Scholar
Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 2014;30:464–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright JB, Brown SJ, Cole MD. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol. 2010;30:1411–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye Q, Hu Y-F, Zhong H, Nye AC, Belmont AS, Li R. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol. 2001;155:911–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett. 2021;26:1–25.
Article
CAS
Google Scholar
Homayoonfal M, Asemi Z, Yousefi B. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cell Mol Biol Lett. 2022;27:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Homayoonfal M, Asemi Z, Yousefi B. Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cell Mol Biol Lett. 2021;26:43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol. 2012;6:620–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paksa A, Rajagopal J. The epigenetic basis of cellular plasticity. Curr Opin Cell Biol. 2017;49:116–22.
Article
CAS
PubMed
Google Scholar
de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Simarro Farinos J, Pujol Marco C, Navarro Mira M, et al. Aberrant DNA methylation is associated with aggressive clinicopathological features and poor survival in cutaneous melanoma. Br J Dermatol. 2018;179:394–404.
PubMed
Google Scholar
Sakaguchi H, Muramatsu H, Okuno Y, Makishima H, Xu Y, Furukawa-Hibi Y, et al. Aberrant DNA methylation is associated with a poor outcome in juvenile myelomonocytic leukemia. PLoS ONE. 2015;10:e0145394.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Hu X, Kuang J, Liao J, Yuan Q. LncRNA DRAIC inhibits proliferation and metastasis of gastric cancer cells through interfering with NFRKB deubiquitination mediated by UCHL5. Cell Mol Biol Lett. 2020;25:1–17.
Article
Google Scholar
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.
Article
CAS
PubMed
Google Scholar
Charles N, Holland EC. Brain tumor treatment increases the number of cancer stem-like cells. Expert Rev Neurother. 2009;9:1447–9.
Article
PubMed
Google Scholar
Martín V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108:2005–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bondy SC, Campbell A. Mechanisms underlying tumor suppressive properties of melatonin. Int J Mol Sci. 2018;19:2205.
Article
PubMed Central
CAS
Google Scholar
Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C. Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1β. J Pineal Res. 2019;67:e12598.
Article
PubMed
CAS
Google Scholar
Boyle P, Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer; 2008.
Stevens RG. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol. 2009;38:963–70.
Article
PubMed
PubMed Central
Google Scholar
Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst. 2001;93:1563–8.
Article
CAS
PubMed
Google Scholar
Schwimmer H, Metzer A, Pilosof Y, Szyf M, Machnes ZM, Fares F, et al. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol Int. 2014;31:144–50.
Article
CAS
PubMed
Google Scholar
Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, et al. Genome-wide profiling in melatonin‐exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res. 2013;54:80–8.
Article
CAS
PubMed
Google Scholar
Agbaria S, Haim A, Fares F, Zubidat AE. Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin–the role of DNA-methyltransferase. Chronobiol Int. 2019;36:629–43.
Article
CAS
PubMed
Google Scholar
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, et al. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie. 2022.
Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metabol. 2018;27:136–50. e5.
Article
CAS
Google Scholar
Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022;27:1–25.
Article
CAS
Google Scholar
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int. 2021;21:1–9.
Article
CAS
Google Scholar
Xiang S, Dauchy RT, Hoffman AE, Pointer D, Frasch T, Blask DE, et al. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3‐driven paclitaxel resistance in breast cancer. J Pineal Res. 2019;67:e12586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett. 2019;24:1–10.
Article
Google Scholar
Rybnikova N, Portnov BA. Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol Int. 2018;35:1198–208.
Article
PubMed
Google Scholar
Zubidat AE, Fares B, Fares F, Haim A. Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways. Cancer control: journal of the Moffitt Cancer Center. 2018;25:1073274818812908.
Article
CAS
Google Scholar