Xu Y, Wang J, Qiu M, Xu L, Li M, Jiang F, Yin R, Xu L. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol. 2015;36:1643–51. https://doi.org/10.1007/s13277-014-2763-6.
Article
CAS
PubMed
Google Scholar
Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, Yang K. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2015;34:7. https://doi.org/10.1186/s13046-015-0123-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sawada G, Niida A, Uchi R, Hirata H, Shimamura T, Suzuki Y, Shiraishi Y, Chiba K, Imoto S, Takahashi Y, et al. Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology. 2016;150:1171–82. https://doi.org/10.1053/j.gastro.2016.01.035.
Article
PubMed
Google Scholar
Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15. https://doi.org/10.1053/j.gastro.2015.08.054.
Article
PubMed
Google Scholar
Agrawal N, Jiao Y, Bettegowda C, Hutfless SM, Wang Y, David S, Cheng Y, Twaddell WS, Latt NL, Shin EJ, et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2:899–905. https://doi.org/10.1158/2159-8290.CD-12-0189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73. https://doi.org/10.1038/ng.2935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piletic K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol. 2016;90:2405–19. https://doi.org/10.1007/s00204-016-1815-7.
Article
CAS
PubMed
Google Scholar
HafezQorani S, Lafzi A, de Bruin RG, van Zonneveld AJ, van der Veer EP, Son YA, Kazan H. Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation. Nucleic Acids Res. 2016;44:e83. https://doi.org/10.1093/nar/gkw048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:45–56. https://doi.org/10.4331/wjbc.v8.i1.45.
Article
PubMed
PubMed Central
Google Scholar
Rao SA, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, Somasundaram K. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 2013;8:e63164. https://doi.org/10.1371/journal.pone.0063164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long J, Menggen Q, Wuren Q, Shi Q, Pi X. MiR-219-5p inhibits the growth and metastasis of malignant melanoma by targeting BCL-2. Biomed Res Int. 2017;2017:9032502. https://doi.org/10.1155/2017/9032502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong GB, Zhang GN, Xiao Y, Niu BZ, Qiu HZ, Wu B, Lin GL, You L, Shu H. MicroRNA-219-5p functions as a tumor suppressor partially by targeting platelet-derived growth factor receptor alpha in colorectal cancer. Neoplasma. 2015;62:855–63. https://doi.org/10.4149/neo_2015_104.
Article
CAS
PubMed
Google Scholar
Yang J, Sheng YY, Wei JW, Gao XM, Zhu Y, Jia HL, Dong QZ, Qin LX. MicroRNA-219-5p promotes tumor growth and metastasis of hepatocellular carcinoma by regulating cadherin 1. Biomed Res Int. 2018;2018:4793971. https://doi.org/10.1155/2018/4793971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p represses the proliferation, migration, and invasion of gastric Cancer cells by targeting the LRH-1/Wnt/beta-catenin signaling pathway. Oncol Res. 2017;25:617–27. https://doi.org/10.3727/096504016X14768374457986.
Article
PubMed
Google Scholar
Huang LX, Hu CY, Jing L, Wang MC, Xu M, Wang J, Wang Y, Nan KJ, Wang SH. microRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci. 2017;108:1985–95. https://doi.org/10.1111/cas.13338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 2016;17:280–92. https://doi.org/10.1038/nrm.2016.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiwari S, Roel C, Wills R, Casinelli G, Tanwir M, Takane KK, Fiaschi-Taesch NM. Early and late G1/S cyclins and Cdks act complementarily to enhance authentic human beta-cell proliferation and expansion. Diabetes. 2015;64:3485–98. https://doi.org/10.2337/db14-1885.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otero JJ, Kalaszczynska I, Michowski W, Wong M, Gygli PE, Gokozan HN, Griveau A, Odajima J, Czeisler C, Catacutan FP, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328–39. https://doi.org/10.1016/j.ydbio.2013.10.019.
Article
CAS
PubMed
Google Scholar
Krasnov GS, Puzanov GA, Kudryavtseva AV, Dmitriev AA, Beniaminov AD, Kondratieva TT, Senchenko VN. Differential expression of an ensemble of the key genes involved in cell-cycle regulation in lung cancer. Mol Biol (Mosk). 2017;51:849–56. https://doi.org/10.7868/S0026898417050135.
Article
CAS
Google Scholar
Zhong W-B, Hsu S-P, Ho P-Y, Liang Y-C, Chang T-C, Lee W-S. Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the rho/ROCK-mediated pathway. Biochem Pharmacol. 2011;82:1663–72. https://doi.org/10.1016/j.bcp.2011.08.021.
Article
CAS
Google Scholar
He Y, Liu J, Zhao Z, Zhao H. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. Dis Esophagus. 2017;30:1–8. https://doi.org/10.1093/dote/dow018.
Article
CAS
PubMed
Google Scholar
Huang C, Cai Z, Huang M, Mao C, Zhang Q, Lin Y, Zhang X, Tang B, Chen Y, Wang X, et al. miR-219-5p modulates cell growth of papillary thyroid carcinoma by targeting estrogen receptor alpha. J Clin Endocrinol Metab. 2015;100:E204–13. https://doi.org/10.1210/jc.2014-2883.
Article
CAS
PubMed
Google Scholar
Cheng J, Deng R, Zhang P, Wu C, Wu K, Shi L, Liu X, Bai J, Deng M, Shuai X, et al. miR-219-5p plays a tumor suppressive role in colon cancer by targeting oncogene Sall4. Oncol Rep. 2015;34:1923–32. https://doi.org/10.3892/or.2015.4168.
Article
CAS
PubMed
Google Scholar
Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumour Biol. 2015;36:8943–51. https://doi.org/10.1007/s13277-015-3651-4.
Article
CAS
PubMed
Google Scholar
Huang N, Lin J, Ruan J, Su N, Qing R, Liu F, He B, Lv C, Zheng D, Luo R. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 2012;586:884–91. https://doi.org/10.1016/j.febslet.2012.02.017.
Article
CAS
PubMed
Google Scholar
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14:130–46. https://doi.org/10.1038/nrd4504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller D, Totzke F, Weber T, Beisenherz-Huss C, Kraemer D, Heidemann-Dinger C, Ketterer C, Eckert C, Kubbutat. MHG: Abstract 2821: characterization of CDK inhibitors in a biochemical assay using a comprehensive panel of human CDK-cyclin complexes. Cancer Res. 2016;76:2821. https://doi.org/10.1158/1538-7445.am2016-2821.
Article
Google Scholar
Bendris N, Loukil A, Cheung C, Arsic N, Rebouissou C, Hipskind R, Peter M, Lemmers B, Blanchard JM. Cyclin A2: a genuine cell cycle regulator? Biomol Concepts. 2012;3:535–43. https://doi.org/10.1515/bmc-2012-0027.
Article
CAS
PubMed
Google Scholar
Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: at the crossroads of cell cycle and cell invasion. World J Biol Chem. 2015;6:346–50. https://doi.org/10.4331/wjbc.v6.i4.346.
Article
PubMed
PubMed Central
Google Scholar
Liang W, Guan H, He X, Ke W, Xu L, Liu L, Xiao H, Li Y. Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2. Oncotarget. 2015;6:31780–91. https://doi.org/10.18632/oncotarget.5566.
Article
PubMed
PubMed Central
Google Scholar
Furihata M, Ishikawa T, Inoue A, Yoshikawa C, Sonobe H, Ohtsuki Y, Araki K, Ogoshi S. Determination of the prognostic significance of unscheduled cyclin a overexpression in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 1996;2:1781–5.
CAS
PubMed
Google Scholar
Lin Z, Xiong L, Lin Q. Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer. Med Oncol. 2015;32:183. https://doi.org/10.1007/s12032-015-0625-8.
Article
CAS
PubMed
Google Scholar
Sun J, Guo Y, Fu X, Wang Y, Liu Y, Huo B, Sheng J, Hu X. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers. Onco Targets Ther. 2016;9:21–30. https://doi.org/10.2147/OTT.S93305.
Article
CAS
PubMed
Google Scholar