Li KT, Chow KM. Peritoneal dialysis-first policy made successful: perspectives and actions. Am J Kidney Dis 2013; 62(5): 993–1005. http://dx.doi.org/10.1053/j.ajkd.2013.03.038.
PubMed
Google Scholar
Wong B, Ravani P, Oliver MJ, Holroyd-Leduc J, Venturato L, Garg AX, Quinn RR. Comparison of patient survival between hemodialysis and peritoneal dialysis among patients eligible for both modalities. Am J Kidney Dis 2018; 71(3): 344–351. http://dx.doi.org/10.1053/j.ajkd.2017.08.028.
PubMed
Google Scholar
Raffaele S, Roberto MV, Cecilia B, Carla C, Valeria N, Laura A, Alessandra M, Miguel A, Marco T. Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int 2016; 4: 1–11. http://dx.doi.org/10.1155/2016/3543678.
Krediet RT, Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol 2013; 9(7): 419–429. http://dx.doi.org/10.1038/nrneph.2013.99.
CAS
PubMed
Google Scholar
Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Perit Dial Int 2015; 35(1): 14–25. http://dx.doi.org/10.3747/pdi.2014.00188.
CAS
Google Scholar
Kriz W, Kaissling B, Le HM. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 2011; 121(2): 468–474. http://dx.doi.org/10.1172/JCI44595.
CAS
PubMed
Google Scholar
Kojiro T, Keiko I, Etsuro H, Shinji U. Controversies over the epithelial-to-mesenchymal transition in liver fibrosis. J Clin Med 2016; 5(1): 9–15. http://dx.doi.org/10.3390/jcm5010009.
Selgas R, Bajo A, JiménezHeffernan José A, SánchezTomero Jose A, Del Peso G, Aguilera A, López-Cabrera M. Epithelial-to-mesenchymal transition of the mesothelial cell-its role in the response of the peritoneum to dialysis. Nephrol Dial Transplant. 2006; 21(Suppl 2): ii2-ii7. http://dx.doi.org/10.1093/ndt/gfl183.
CAS
Google Scholar
Shin HS, Ko J, Kim DA, Ryu ES, Ryu HM, Park SH, Kim YL, Oh ES, Kang DH. Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci Rep 2017; 7(1): 5690. http://dx.doi.org/10.1038/s41598-017-05836-6.
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014; 7(344): 1–38. http://dx.doi.org/10.1126/scisignal.2005189.
PubMed
PubMed Central
Google Scholar
Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113(6): 685–700. http://dx.doi.org/10.1016/S0092-8674(03)00432-X.
CAS
PubMed
Google Scholar
Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009; 284(20): 13291–13295. http://dx.doi.org/10.1074/jbc.R900010200.
CAS
PubMed
Google Scholar
Nezu M, Souma T, Yu L. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int 2017; 91(2): 387–401. http://dx.doi.org/10.1016/j.kint.2016.08.023.
CAS
PubMed
Google Scholar
Wu X, Bian D, Dou Y, Gong Z, Tan Q, Xia Y, Dai Y. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J Biochem Mol Toxicol 2017; 31(8): 1–6. http://dx.doi.org/10.1002/jbt.21922.
Google Scholar
Jiang JZ, Ye J, Jin GY, Piao HM, Cui H, Zheng MY, Yang JS, Che N, Choi YH, Li LC, Yan GH. Asiaticoside mitigates the allergic inflammation by abrogating the degranulation of mast cells. J Agr Food Chem 2017; 65(37): 8128–8135. http://dx.doi.org/10.1021/acs.jafc.7b01590.
CAS
PubMed
Google Scholar
Xing Y, Ji Q, Li X, Ming J, Zhang N, Zha D, Lin Y. Asiaticoside protects cochlear hair cells from high glucose-induced oxidative stress via suppressing AGEs/RAGE/NF-κB pathway. Biomed Pharmacother 2017; 86: 531–536. http://dx.doi.org/10.1016/j.biopha.2016.12.025.
CAS
Google Scholar
Aroeira LS, Aguilera A, Sánchez-Tomero JA, Bajo MA, Del PG, Jiménez-Heffernan JA, Selgas R, López-Cabrera M. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007; 18(7): 2004–2013. http://dx.doi.org/10.1681/ASN.2006111292.
CAS
PubMed
Google Scholar
Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 2016; 90(3): 515–524. http://dx.doi.org/10.1016/j.kint.2016.03.040.
PubMed
Google Scholar
Lupinacci S, Anna P, Toteda G, Vizza D, PuociO F, Parisi IO, Giordano F, Lofaro D, Russa AL, Bonofiglio M, Bonofiglio R. Olive leaf extract counteracts epithelial to mesenchymal transition process induced by peritoneal dialysis, through the inhibition of TGF-β1 signaling. Cell Biol Toxicol 2019; 35(2): 95–109. http://dx.doi.org/10.1007/s10565-018-9438-9.
PubMed
Google Scholar
Xu W, Shao X, Tian L, Gu L, Zhang M, Wang Q, Wu B, Wang L, Yao J, Xu X, Mou S, Ni Z. Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogenactivated protein kinases and antiapoptosis in vivo and in vitro. J Pharmacol Exp Ther 2014; 350(3): 552–562. http://dx.doi.org/10.1124/jpet.114.214205.
PubMed
Google Scholar
Rodrigues-Diez R, Rodrigues-Diez RR, Lavoz C, Carvajal G, Droguett A, Garcia-Redondo AB, Rodriguez I, Ortiz A, Egido J, Mezzano S, Ruiz-Ortega M. Gremlin activates the Smad pathway linked to epithelial mesenchymal transdifferentiation in cultured tubular epithelial cells. Biomed Res Int. 2014: 802–841. http://dx.doi.org/10.1155/2014/802841.
Liakopoulos V, Roumeliotis S, Gorny X, Eleftheriadis T, Mertens PR. Oxidative stress in patients undergoing peritoneal dialysis: a current review of the literature. Oxid Med Cell Longevity 2017; 2: 1–14. http://dx.doi.org/10.1155/2017/3494867.
Google Scholar
Jeong BY, Park SR, Cho S, Yu SL, Lee HY, Park CG, Kang J, Jung DY, Park MH, Hwang W., Yun SR, Jung JY, Yoo, SH. TGF-β-mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury. J Antimicrob Chemoth 2018; 73(4): 962–972. http://dx.doi.org/10.1093/jac/dkx479.
CAS
PubMed
Google Scholar
Samarakoon R, Dobberfuhl A D, Cooley C, et al. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 2013; 25(11): 2198–2209. http://dx.doi.org/10.1016/j.cellsig.2013.07.007.
CAS
PubMed
Google Scholar
Jiang M, Zhang H, Zhai L, et al. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway. Lipids Health Dis 2017; 16(1): 216. http://dx.doi.org/10.1186/s12944-017-0611-6.
Yagishita Y, Uruno A, Fukutomi T, Saito R, Saigusa D, Pi J, Fukamizu A, Sugiyama F, Takahashi S, Yamamoto M. Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress. Cell Rep 2017; 18(8): 2030–2044. http://dx.doi.org/10.1016/j.celrep.2017.01.064.
CAS
PubMed
Google Scholar
Liu M, Ravula R, Wang ZJ, Zuo Z. Traditional Chinese medicinal formula Si-Wu-tang prevents oxidative damage by activating Nrf2-mediated detoxifying/antioxidant genes. Cell Biosci 2014; 4(1): 4–8. http://dx.doi.org/10.1186/2045-3701-4-8.
Google Scholar
Wang X, Ye XL, Liu R, Chen HL, Bai H, Liang X, Zhang XD, Wang, Li WL, Hai CX. Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chem Biol Interact 2010; 184(3): 328–337. http://dx.doi.org/10.1016/j.cbi.2010.01.034.
CAS
PubMed
Google Scholar
Liang B, Peng L, Li R, Li H, Mo Z, Dai X, Jiang N, Liu Q, Zhang E, Deng H, Li Z, Zhu H. Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cell Mol Biol Lett 2018. 23: 18. http://dx.doi.org/10.1186/s11658-018-0084-2.
Gao LL, Fan Y, Zhang XL, Yang LN, Huang WY, Hang TY, Li MY, Du SY, Ma JF. Zinc supplementation inhibits the high glucose-induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway. Mol Med Rep 2019; 20(1): 655–663. http://dx.doi.org/10.3892/mmr.2019.10260.
Oh CJ, Kim JY, Min AK, Park KG, Harris RA, Kim HJ, Lee IK. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling. Free Radic Biol Med 2012; 52(3): 671–682. http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.012.
CAS
PubMed
Google Scholar
Chen Q, Zhang H, Cao Y, Li Y, Zhang G. Schisandrin B attenuates CCl4 induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways. Drug Des Devel Ther 2017; 11: 2179–2191. http://dx.doi.org/10.2147/DDDT.S137507.
Oh CJ, Kim JY, Choi YK, Kim HJ, Jeong JY, Bae KH, Par, KG, Lee IK. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-b/Smad signaling. PLoS One 2012; 7(10): 671–682. http://dx.doi.org/10.1371/journal.pone.0045870.
CAS
PubMed
PubMed Central
Google Scholar
Hafiz ZZ, Amin M'M, Johari James RM, The LK, Salleh MZ, Adenan MI. Inhibitory effects of raw-extract Centella asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities via in vitro and in vivo. Molecules. 2020; 25(4): 892. http://dx.doi.org/10.3390/molecules25040892.
CAS
PubMed Central
Google Scholar