Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, et al. Photoprotective properties of vitamin D and lumisterol hydroxyderivatives. Cell Biochem Biophys. 2020;78(2):165–80.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Brożyna AA, Zmijewski MA, Jóźwicki W, Jetten AM, Mason RS, et al. Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Invest. 2017;97(6):706–24.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, et al. The role of classical and novel forms of vitamin D in the pathogenesis and progression of nonmelanoma skin cancers. Adv Exp Med Biol. 2020;1268:257–83.
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Tang Z, Slominski AT, Li W, Żmijewski MA, Liu Y. Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem. 2020;207: 112738.
CAS
PubMed
Google Scholar
Zmijewski MA, Carlberg C. Vitamin D receptor(s): in the nucleus but also at membranes? Exp Dermatol. 2020;29(9):876–84.
CAS
PubMed
Google Scholar
Gaucci E, Raimondo D, Grillo C, Cervoni L, Altieri F, Nittari G, et al. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57. Sci Rep. 2016;6:37957.
CAS
PubMed
PubMed Central
Google Scholar
Mizwicki MT, Menegaz D, Yaghmaei S, Henry HL, Norman AW. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications. J Steroid Biochem Mol Biol. 2010;121(1–2):98–105.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, et al. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 2014;28(7):2775–89.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, et al. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep. 2021;11(1):8002.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Janjetovic Z, Brożyna AA, Żmijewski MA, Xu H, et al. Differential and overlapping effects of 20,23(OH)2D3 and 1,25(OH)2D3 on gene expression in human epidermal keratinocytes: identification of AhR as an alternative receptor for 20,23(OH)2D3. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19103072.
Article
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Chen J, Nguyen MN, Li W, Yates CR, et al. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. Int J Biochem Cell Biol. 2012;44(11):2003–18.
CAS
PubMed
PubMed Central
Google Scholar
Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A, et al. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J. 2005;272(16):4080–90.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Li W, Postlethwaite A, Tieu EW, Tang EKY, et al. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep. 2015;5:14875.
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN, et al. In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 2012;26(9):3901–15.
CAS
PubMed
PubMed Central
Google Scholar
Psarra AM, Sekeris CE. Steroid and thyroid hormone receptors in mitochondria. IUBMB Life. 2008;60(4):210–23.
CAS
PubMed
Google Scholar
Silvagno F, Poma CB, Realmuto C, Ravarino N, Ramella A, Santoro N, et al. Analysis of vitamin D receptor expression and clinical correlations in patients with ovarian cancer. Gynecol Oncol. 2010;119(1):121–4.
CAS
PubMed
Google Scholar
Silvagno F, Consiglio M, Foglizzo V, Destefanis M, Pescarmona G. Mitochondrial translocation of vitamin D receptor is mediated by the permeability transition pore in human keratinocyte cell line. PLoS ONE. 2013;8(1): e54716.
CAS
PubMed
PubMed Central
Google Scholar
Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem. 1997;272(9):5774–82.
CAS
PubMed
Google Scholar
Consiglio M, Destefanis M, Morena D, Foglizzo V, Forneris M, Pescarmona G, et al. The vitamin D receptor inhibits the respiratory chain, contributing to the metabolic switch that is essential for cancer cell proliferation. PLoS ONE. 2014;9(12): e115816.
PubMed
PubMed Central
Google Scholar
Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F. Vitamin D receptor is necessary for mitochondrial function and cell health. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19061672.
Article
PubMed
PubMed Central
Google Scholar
Piotrowska A, Wierzbicka J, Ślebioda T, Woźniak M, Tuckey RC, Slominski AT, et al. Vitamin D derivatives enhance cytotoxic effects of H2O2 or cisplatin on human keratinocytes. Steroids. 2016;110:49–61.
CAS
PubMed
Google Scholar
Demonacos CV, Karayanni N, Hatzoglou E, Tsiriyiotis C, Spandidos DA, Sekeris CE. Mitochondrial genes as sites of primary action of steroid hormones. Steroids. 1996;61(4):226–32.
CAS
PubMed
Google Scholar
Long W, Fatehi M, Soni S, Panigrahi R, Philippaert K, Yu Y, et al. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J Physiol. 2020;598(19):4321–38.
CAS
PubMed
Google Scholar
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin). 2021;15(1):360–74.
Google Scholar
Chen Y, Liu X, Zhang F, Liao S, He X, Zhuo D, et al. Vitamin D receptor suppresses proliferation and metastasis in renal cell carcinoma cell lines via regulating the expression of the epithelial Ca2+ channel TRPV5. PLoS ONE. 2018;13(4): e0195844.
PubMed
PubMed Central
Google Scholar
Taparia S, Fleet JC, Peng JB, Wang XD, Wood RJ. 1,25-Dihydroxyvitamin D and 25-hydroxyvitamin D–mediated regulation of TRPV6 (a putative epithelial calcium channel) mRNA expression in Caco-2 cells. Eur J Nutr. 2006;45(4):196–204.
CAS
PubMed
Google Scholar
García-Becerra R, Díaz L, Camacho J, Barrera D, Ordaz-Rosado D, Morales A, et al. Calcitriol inhibits Ether-à go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp Cell Res. 2010;316(3):433–42.
PubMed
Google Scholar
Avila E, García-Becerra R, Rodríguez-Rasgado JA, Díaz L, Ordaz-Rosado D, Zügel U, et al. Calcitriol down-regulates human ether a go-go 1 potassium channel expression in cervical cancer cells. Anticancer Res. 2010;30(7):2667–72.
CAS
PubMed
Google Scholar
Callejo M, Mondejar-Parreño G, Morales-Cano D, Barreira B, Esquivel-Ruiz S, Olivencia MA, et al. Vitamin D deficiency downregulates TASK-1 channels and induces pulmonary vascular dysfunction. Am J Physiol Lung Cell Mol Physiol. 2020;319(4):L627–40.
CAS
PubMed
Google Scholar
Tripathy B, Majhi RK. TRPV1 channel as the membrane vitamin D receptor: solving part of the puzzle. J Physiol. 2020;598(24):5601–3.
CAS
PubMed
Google Scholar
Dolga AM, Netter MF, Perocchi F, Doti N, Meissner L, Tobaben S, et al. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction. J Biol Chem. 2013;288(15):10792–804.
CAS
PubMed
PubMed Central
Google Scholar
De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabò I, et al. Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium. 2009;45(5):509–16.
PubMed
Google Scholar
Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun. 1999;257(2):549–54.
CAS
PubMed
Google Scholar
Toczyłowska-Mamińska R, Olszewska A, Laskowski M, Bednarczyk P, Skowronek K, Szewczyk A. Potassium channel in the mitochondria of human keratinocytes. J Invest Dermatol. 2014;134(3):764–72.
PubMed
Google Scholar
Szabò I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, et al. A novel potassium channel in lymphocyte mitochondria. J Biol Chem. 2005;280(13):12790–8.
PubMed
Google Scholar
Leanza L, Zoratti M, Gulbins E, Szabò I. Induction of apoptosis in macrophages via Kv1.3 and Kv1.5 potassium channels. Curr Med Chem. 2012;19(31):5394–404.
CAS
PubMed
Google Scholar
Testai L, Barrese V, Soldovieri MV, Ambrosino P, Martelli A, Vinciguerra I, et al. Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection. Cardiovasc Res. 2016;110(1):40–50.
CAS
PubMed
Google Scholar
Gałecka S, Kulawiak B, Bednarczyk P, Singh H, Szewczyk A. Single channel properties of mitochondrial large conductance potassium channel formed by BK-VEDEC splice variant. Sci Rep. 2021;11(1):10925.
PubMed
PubMed Central
Google Scholar
León-Aparicio D, Salvador C, Aparicio-Trejo OE, Briones-Herrera A, Pedraza-Chaverri J, Vaca L, et al. Novel potassium channels in kidney mitochondria: the hyperpolarization-activated and cyclic nucleotide-gated HCN channels. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20204995.
Article
PubMed
PubMed Central
Google Scholar
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional regulation of cardiac mitochondrial potassium channels. Cells. 2021. https://doi.org/10.3390/cells10061554.
Article
PubMed
PubMed Central
Google Scholar
Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, et al. Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol. 2002;283(1):H284–95.
PubMed
Google Scholar
Bednarczyk P, Barker GD, Halestrap AP. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria. Biochim Biophys Acta. 2008;1777(6):540–8.
CAS
PubMed
Google Scholar
Debska G, May R, Kicińska A, Szewczyk A, Elger CE, Kunz WS. Potassium channel openers depolarize hippocampal mitochondria. Brain Res. 2001;892(1):42–50.
CAS
PubMed
Google Scholar
Kulawiak B, Kudin AP, Szewczyk A, Kunz WS. BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol. 2008;212(2):543–7.
CAS
PubMed
Google Scholar
Facundo HT, Carreira RS, de Paula JG, Santos CC, Ferranti R, Laurindo FR, et al. Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity. Free Radic Biol Med. 2006;40(3):469–79.
CAS
PubMed
Google Scholar
Sato T, Saito T, Saegusa N, Nakaya H. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation. 2005;111(2):198–203.
CAS
PubMed
Google Scholar
Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009;61(2):134–43.
CAS
PubMed
Google Scholar
Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, et al. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298(5595):1029–33.
CAS
PubMed
Google Scholar
Skalska J, Piwońska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, et al. A novel potassium channel in skeletal muscle mitochondria. Biochim Biophys Acta. 2008;1777(7–8):651–9.
CAS
PubMed
Google Scholar
Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D. Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem. 2008;22(1–4):127–36.
CAS
PubMed
Google Scholar
Fahanik-Babaei J, Eliassi A, Jafari A, Sauve R, Salari S, Saghiri R. Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. Biochim Biophys Acta. 2011;1808(1):454–60.
CAS
PubMed
Google Scholar
Bednarczyk P, Kampa RP, Gałecka S, Sęk A, Walewska A, Koprowski P. Patch-Clamp recording of the activity of ion channels in the inner mitochondrial membrane. Methods Mol Biol. 2021;2276:235–48.
CAS
PubMed
Google Scholar
Bednarczyk P, Wieckowski MR, Broszkiewicz M, Skowronek K, Siemen D, Szewczyk A. Putative structural and functional coupling of the mitochondrial BKCa channel to the respiratory chain. PLoS ONE. 2013;8(6): e68125.
CAS
PubMed
PubMed Central
Google Scholar
Płudowski P, Karczmarewicz E, Bayer M, Carter G, Chlebna-Sokół D, Czech-Kowalska J, et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 2013;64:319–27.
PubMed
Google Scholar
Souberbielle JC, Cavalier E, Delanaye P, Massart C, Brailly-Tabard S, Cormier C, et al. Serum calcitriol concentrations measured with a new direct automated assay in a large population of adult healthy subjects and in various clinical situations. Clin Chim Acta. 2015;451(Pt B):149–53.
CAS
PubMed
Google Scholar
Barbera NA, Minke B, Levitan I. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs stereospecific response. Channels (Austin). 2019;13(1):136–46.
Google Scholar
Gearing LJ, Cumming HE, Chapman R, Finkel AM, Woodhouse IB, Luu K, et al. CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS ONE. 2019;14(9): e0215495.
CAS
PubMed
PubMed Central
Google Scholar
Kim JM, Song KS, Xu B, Wang T. Role of potassium channels in female reproductive system. Obstet Gynecol Sci. 2020;63(5):565–76.
PubMed
PubMed Central
Google Scholar
Sakamoto K, Kurokawa J. Involvement of sex hormonal regulation of K(+) channels in electrophysiological and contractile functions of muscle tissues. J Pharmacol Sci. 2019;139(4):259–65.
CAS
PubMed
Google Scholar
Restrepo-Angulo I, Bañuelos C, Camacho J. Ion channel regulation by sex steroid hormones and vitamin D in cancer: a potential opportunity for cancer diagnosis and therapy. Front Pharmacol. 2020;11:152.
CAS
PubMed
PubMed Central
Google Scholar
Granados ST, Castillo K, Bravo-Moraga F, Sepúlveda RV, Carrasquel-Ursulaez W, Rojas M, et al. The molecular nature of the 17β-Estradiol binding site in the voltage- and Ca(2+)-activated K(+) (BK) channel β1 subunit. Sci Rep. 2019;9(1):9965.
PubMed
PubMed Central
Google Scholar
Thiede A, Gellerich FN, Schönfeld P, Siemen D. Complex effects of 17β-estradiol on mitochondrial function. Biochim Biophys Acta. 2012;1817(10):1747–53.
CAS
PubMed
Google Scholar
Tamayo M, Manzanares E, Bas M, Martín-Nunes L, Val-Blasco A, Jesús Larriba M, et al. Calcitriol (1,25-dihydroxyvitamin D(3)) increases L-type calcium current via protein kinase A signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes. Heart Rhythm. 2017;14(3):432–9.
PubMed
Google Scholar
Tamayo M, Martin-Nunes L, Val-Blasco A, Piedras MJ, Larriba MJ, Gómez-Hurtado N, et al. Calcitriol, the bioactive metabolite of vitamin D, increases ventricular K(+) currents in isolated mouse cardiomyocytes. Front Physiol. 2018;9:1186.
PubMed
PubMed Central
Google Scholar
Granados ST, Latorre R, Torres YP. The membrane cholesterol modulates the interaction between 17-βEstradiol and the BK channel. Front Pharmacol. 2021;12: 687360.
CAS
PubMed
PubMed Central
Google Scholar
Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287(24):20509–21.
CAS
PubMed
PubMed Central
Google Scholar
Bukiya AN, Dopico AM. Cholesterol antagonism of alcohol inhibition of smooth muscle BK channel requires cell integrity and involves a protein kinase C-dependent mechanism(s). Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(4): 158874.
CAS
PubMed
Google Scholar
Wu Y, Yang Y, Ye S, Jiang Y. Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature. 2010;466(7304):393–7.
CAS
PubMed
PubMed Central
Google Scholar
Miranda P, Giraldez T, Holmgren M. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring. Proc Natl Acad Sci U S A. 2016;113(49):14055–60.
CAS
PubMed
PubMed Central
Google Scholar
Rasmussen H, Matsumoto T, Fontaine O, Goodman DB. Role of changes in membrane lipid structure in the action of 1,25-dihydroxyvitamin D3. Fed Proc. 1982;41(1):72–7.
CAS
PubMed
Google Scholar
Deliconstantinos G, Kopeikina-Tsiboukidou L, Tsakiris S. Perturbations of rat intestinal brush border membranes induced by Ca2+ and vitamin D3 are detected using steady-state fluorescence polarization and alkaline phosphatase as membrane probes. Biochem Pharmacol. 1986;35(10):1633–7.
CAS
PubMed
Google Scholar
Boyan BD, Sylvia VL, Dean DD, Pedrozo H, Del Toro F, Nemere I, et al. 1,25-(OH)2D3 modulates growth plate chondrocytes via membrane receptor-mediated protein kinase C by a mechanism that involves changes in phospholipid metabolism and the action of arachidonic acid and PGE2. Steroids. 1999;64(1–2):129–36.
CAS
PubMed
Google Scholar
Ji L, Gupta M, Feldman BJ. Vitamin D regulates fatty acid composition in subcutaneous adipose tissue through Elovl3. Endocrinology. 2016;157(1):91–7.
CAS
PubMed
Google Scholar
Tolosa de Talamoni N, Morero R, Cañas F. Vitamin D3 administration increases the membrane fluidity of intestinal mitochondria. Biochem Int. 1989;19(4):701–7.
CAS
PubMed
Google Scholar
Khatun A, Fujimoto M, Kito H, Niwa S, Suzuki T, Ohya S. Down-regulation of Ca(2+)-activated K+ channel K(Ca)1.1 in human breast cancer MDA-MB-453 cells treated with vitamin D receptor agonists. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122083.
Article
PubMed
PubMed Central
Google Scholar
Cázares-Ordoñez V, González-Duarte RJ, Díaz L, Ishizawa M, Uno S, Ortíz V, et al. A cis-acting element in the promoter of human ether à go-go 1 potassium channel gene mediates repression by calcitriol in human cervical cancer cells. Biochem Cell Biol. 2015;93(1):94–101.
PubMed
Google Scholar
Szabò I, Zoratti M, Gulbins E. Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett. 2010;584(10):2049–56.
PubMed
Google Scholar