Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):e359–86.
Article
CAS
PubMed
Google Scholar
Vizcaino AP, Moreno V, Bosch FX, Muñoz N, Barros-Dios XM, Borras J, et al. International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int J Cancer. 2000;86(3):429–35.
Article
CAS
PubMed
Google Scholar
Tay SK. Cervical cancer in the human papillomavirus vaccination era. Curr Opin Obstet Gynecol. 2012;24(1):3–7.
Article
PubMed
Google Scholar
Al-Mansour Z, Verschraegen C. Locally advanced cervical cancer: what is the standard of care? Curr Opin Oncol. 2010;22(5):503–12.
Article
PubMed
Google Scholar
De Vuyst H, Alemany L, Lacey C, Chibwesha CJ, Sahasrabuddhe V, Banura C, et al. The burden of human papillomavirus infections and related diseases in sub-saharan Africa. Vaccine. 2013;31(s5):32–46.
Article
Google Scholar
Ginsberg GM, Edejer TT, Lauer JA, Sepulveda C. Screening, prevention and treatment of cervical cancer—a global and regional generalized cost-effectiveness analysis. Vaccine. 2009;27(43):6060–79.
Article
PubMed
Google Scholar
Waggoner SE. Cervical cancer. Lancet. 2003;361(9376):2217–25.
Article
PubMed
Google Scholar
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resis Updat. 2007;10(4–5):162–81.
Article
CAS
Google Scholar
Zhou J, Giannakakou P. Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2005;5(1):65–71.
Article
CAS
PubMed
Google Scholar
Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell. 2005;8(1):7–12.
Article
CAS
PubMed
Google Scholar
Chan K, Koh CG, Li H. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012;3(10):e411.
Article
PubMed
PubMed Central
Google Scholar
Garrett MD. Cell cycle control and cancer. Curr Sci. 2001;81(5):515–22.
Google Scholar
Johnson DG, Walker LC. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39:295–312.
Article
CAS
PubMed
Google Scholar
LaVallee TM, Burke PA, Swartz GM, Hamel E, Agoston GE, Shah J, et al. Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther. 2008;7(6):1472–82.
Article
CAS
PubMed
Google Scholar
Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents. 2002;2(1):1–17.
Article
CAS
PubMed
Google Scholar
Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60(3):165–70.
Article
CAS
PubMed
Google Scholar
Shi J, Orth JD, Mitchison T. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res. 2008;68(9):3269–76.
Article
CAS
PubMed
Google Scholar
Schumacher G, Neuhaus P. The physiological estrogen metabolite 2-methoxyestradiol reduces tumor growth and induces apoptosis in human solid tumors. J Cancer Res Clin Oncol. 2001;127(7):405–10.
Article
CAS
PubMed
Google Scholar
Kamath K, Okouneva T, Larson G, Panda D, Wilson L, Jordan MA. 2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules. Mol Cancer Ther. 2006;5(9):2225–33.
Article
CAS
PubMed
Google Scholar
Li L, Bu S, Backstrom T, Landstrom M, Ulmsten U, Fu X. Induction of apoptosis and G2/M arrest by 2-methoxyestradiol in human cervical cancer HeLaS3 cells. Anticancer Res. 2004;24(2):873–80.
CAS
PubMed
Google Scholar
Mooberry SL. Mechanism of action of 2-methoxyestradiol: new developments. Drug Resis Updat. 2003;6(6):355–61.
Article
CAS
Google Scholar
Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2):165–72.
Article
CAS
PubMed
Google Scholar
Lakhani NJ, Sparreboom A, Xu X, Veenstra TD, Venitz J, Dahut WL, et al. Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-methoxyestradiol. J Pharm Sci. 2007;96(7):1821–31.
Article
CAS
PubMed
Google Scholar
Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev. 2009;35(3):255–61.
Article
CAS
PubMed
Google Scholar
Matei D, Schilder J, Sutton G, Perkins S, Breen T, Quon C, et al. Activity of 2 methoxyestradiol (Panzem NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier oncology group trial. Gynecol Oncol. 2009;115(1):90–6.
Article
CAS
PubMed
Google Scholar
Tevaarwerk A, Holen K, Alberti D, Sidor C, Arnott J, Quon C, et al. Phase I trial of 2-methoxyestradiol nanocrystal dispersion in advanced solid malignancies. Clin Cancer Res. 2009;15(4):1460–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison MR, Hahn NM, Pili R, Oh WK, Hammers H, Sweeney C, et al. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal® dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Investig New Drugs. 2011;29(6):1465–74.
Article
CAS
Google Scholar
Bruce JY, Eickhoff J, Pili R, Logan T, Carducci M, Arnott J, et al. A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Investig New Drugs. 2012;30(2):794–802.
Article
CAS
Google Scholar
Mueck A, Seeger H. 2-Methoxyestradiol—biology and mechanism of action. Steroids. 2010;75(10):625–31.
Article
CAS
PubMed
Google Scholar
Stander A, Joubert F, Joubert A. Docking, synthesis, and in vitro evaluation of antimitotic estrone analogs. Chem Biol Drug Des. 2011;77(3):173–81.
Article
CAS
PubMed
Google Scholar
Stander XX, Stander BA, Joubert AM. In vitro effects of an in silico-modelled 17-estradiol derivative in combination with dichloroacetic acid on MCF-7 and MCF-12A cells. Cell Prolif. 2011;44(6):567–81.
Article
CAS
PubMed
Google Scholar
Chander SK, Foster PA, Leese MP, Newman SP, Potter BV, Purohit A, et al. In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. Br J Cancer. 2007;96(9):1368–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visagie M, Mqoco T, Joubert A. Sulphamoylated estradiol analogue induces antiproliferative activity and apoptosis in breast cell lines. Cell Mol Biol Lett. 2012;17(4):549–58.
Article
CAS
PubMed
Google Scholar
Pasquier E, Sinnappan S, Munoz MA, Kavallaris M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther. 2010;9(5):1408–18.
Article
CAS
PubMed
Google Scholar
Visagie MH, Joubert AM. The in vitro effects of 2-methoxyestradiol-bis-sulphamate on cell numbers, membrane integrity and cell morphology, and the possible induction of apoptosis and autophagy in a non-tumorigenic breast epithelial cell line. Cell Mol Biol Lett. 2010;15(4):564–81.
Article
CAS
PubMed
Google Scholar
Ho Y, Purohit A, Vicker N, Newman S, Robinson J, Leese M, et al. Inhibition of carbonic anhydrase II by steroidal and non-steroidal sulphamates. Biochem Biophys Res Commun. 2003;305(4):909–14.
Article
CAS
PubMed
Google Scholar
Ireson C, Chander S, Purohit A, Perera S, Newman S, Parish D, et al. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer. 2004;90(4):932–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leese MP, Leblond B, Newman SP, Purohit A, Reed MJ, Potter BV. Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-O-sulfamates. J Steroid Biochem Mol Biol. 2005;94(1–3):239–51.
Article
CAS
PubMed
Google Scholar
Wolmarans E, Mqoco T, Stander A, Nkandeu S, Sippel K, McKenna R, et al. Novel estradiol analogue induces apoptosis and autophagy in esophageal carcinoma cells. Cell Mol Biol Lett. 2014;19(1):98–115.
Article
CAS
PubMed
Google Scholar
Wolmarans E, Sippel K, McKenna R, Joubert A. Induction of the intrinsic apoptotic pathway via a new antimitotic agent in an esophageal carcinoma cell line. Cell Biosci. 2014;4(1):1–14.
Article
Google Scholar
Theron AE, Nolte EM, Lafanechere L, Joubert AM. Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells. Cancer Cell Int. 2013;13(1):87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stander BA, Joubert F, Tu C, Sippel KH, McKenna R, Joubert AM. Signaling pathways of ESE-16, an antimitotic and anticarbonic anhydrase estradiol analog, in breast cancer cells. PLoS One. 2013;8(s1):e53853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986;159(1):109–13.
Article
CAS
PubMed
Google Scholar
Kueng W, Silber E, Eppenberger U. Quantification of cells cultured on 96-well plates. Anal Biochem. 1989;182(1):16–9.
Article
CAS
PubMed
Google Scholar
Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, et al. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol. 2009;16(7):712–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, et al. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J Biomol Screen. 2011;16(6):575–87.
Article
CAS
PubMed
Google Scholar
Kirstein SL, Atienza JM, Xi B, Zhu J, Yu N, Wang X, et al. Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev Technol. 2006;4(5):545–53.
Article
CAS
PubMed
Google Scholar
Marais S, Mqoco T, Stander A, Van Papendorp D, Joubert A. The in vitro effects of a sulphamoylated derivative of 2-methoxyestradiol on cell number, morphology and alpha-tubulin disruption in cervical adenocarcinoma (HeLa) cells. Biomed Res. 2012;23(3):357–62.
CAS
Google Scholar
Wehner E. PlasDIC, an innovative relief contrast for routine observation in cell biology. Imaging Microsc. 2003;4:23.
Google Scholar
Mqoco T, Joubert A. 2-Methoxyestradiol-bis-sulphamate induces apoptosis and autophagy in an oesophageal carcinoma (SNO) cell line. Biomed Res-India. 2012;23(4):469–74.
CAS
Google Scholar
Avwioro G. Histochemical uses of haematoxylin—a review. JPCS. 2011;1:24–34.
Google Scholar
Picot J, Guerin CL, Le Van Kim C, Boulanger CM. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology. 2012;64(2):109–30.
Article
PubMed
PubMed Central
Google Scholar
Darzynkiewicz Z, Halicka HD, Zhao H. Analysis of cellular DNA content by flow and laser scanning cytometry. Adv Exp Med Biol. 2010;676:137–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11.
CAS
PubMed
Google Scholar
Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis. 2003;8(5):413–50.
Article
CAS
PubMed
Google Scholar
Domingo-Sananes MR, Kapuy O, Hunt T, Novak B. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Proc R Soc Lond B Biol Sci. 2011;366(1584):3584–94.
Article
CAS
Google Scholar
Stander BA, Marais S, Vorster C, Joubert AM. In vitro effects of 2-methoxyestradiol on morphology, cell cycle progression, cell death and gene expression changes in the tumorigenic MCF-7 breast epithelial cell line. J Steroid Biochem Mol Biol. 2010;119(3):149–60.
Article
CAS
PubMed
Google Scholar
Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods. 1995;184(1):39–51.
Article
CAS
PubMed
Google Scholar
van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31(1):1–9.
Article
CAS
PubMed
Google Scholar
Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin. 2005;37(11):719–27.
Article
CAS
PubMed
Google Scholar
Mirnikjoo B, Balasubramanian K, Schroit AJ. Suicidal membrane repair regulates phosphatidylserine externalization during apoptosis. J Biol Chem. 2009;284(34):22512–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyrat J, Brion J, Alami M. Synthetic 2-methoxyestradiol derivatives: structure-activity relationships. Curr Med Chem. 2012;19(24):4142–56.
Article
CAS
PubMed
Google Scholar
Choi HJ, Zhu BT. Critical role of cyclin B1/Cdc2 up-regulation in the induction of mitotic prometaphase arrest in human breast cancer cells treated with 2-methoxyestradiol. Biochim Biophys Acta. 2012;1823(8):1306–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chua YS, Chua YL, Hagen T. Structure activity analysis of 2-methoxyestradiol analogues reveals targeting of microtubules as the major mechanism of antiproliferative and proapoptotic activity. Mol Cancer Ther. 2010;9(1):224–35.
Article
CAS
PubMed
Google Scholar
LaVallee TM, Zhan XH, Herbstritt CJ, Kough EC, Green SJ, Pribluda VS. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res. 2002;62(13):3691–7.
CAS
PubMed
Google Scholar
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol. 2015;76:1–12.
Article
Google Scholar
Thiry A, Dogne J, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci. 2006;27(11):566–73.
Article
CAS
PubMed
Google Scholar
Nkandeu DS, Mqoco TV, Visagie MH, Stander BA, Wolmarans E, Cronje MJ, et al. In vitro changes in mitochondrial potential, aggresome formation and caspase activity by a novel 17-β-estradiol analogue in breast adenocarcinoma cells. Cell Biochem Funct. 2013;31(7):566–74.
CAS
PubMed
Google Scholar
Visagie M, Theron A, Mqoco T, Vieira W, Prudent R, Martinez A, et al. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines. PLoS One. 2013;8(9):e71935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stander BA, Joubert F, Tu C, Sippel KH, McKenna R, Joubert AM. In vitro evaluation of ESE-15-ol, an estradiol analogue with nanomolar antimitotic and carbonic anhydrase inhibitory activity. PLoS One. 2012;7(12):e52205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visagie MH, Stander BA, Birkholtz L, Margaretha A. Short communication: effects of a 17-beta estradiol analogue on gene expression and morphology in a breast epithelial adenocarcinoma cell line: a potential antiproliferative agent. Biomed Res. 2013;24(4):525–30.
Google Scholar
Leese MP, Leblond B, Smith A, Newman SP, Di Fiore A, De Simone G, et al. 2-substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis, in vitro SAR, protein crystallography, and in vivo activity. J Med Chem. 2006;49(26):7683–96.
Article
CAS
PubMed
Google Scholar
Vorster C, Joubert A. In vitro effects of 2-methoxyestradiol-bis-sulphamate on cell growth, morphology and cell cycle dynamics in the MCF-7 breast adenocarcinoma cell line. Biocell. 2010;34(2):71–9.
CAS
PubMed
Google Scholar
Mqoco T, Marais S, Joubert A. Influence of estradiol analogue on cell growth, morphology and death in esophageal carcinoma cells. Biocell. 2010;34(3):113–20.
CAS
PubMed
Google Scholar
Theron A, Prudent R, Nolte E, van den Bout I, Punchoo R, Marais S, et al. Novel in silico-designed estradiol analogues are cytotoxic to a multidrug-resistant cell line at nanomolar concentrations. Cancer Chemother Pharmacol. 2015;75(2):431–7.
Article
CAS
PubMed
Google Scholar
Newman SP, Ireson CR, Tutill HJ, Day JM, Parsons MF, Leese MP, et al. The role of 17beta-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells. Cancer Res. 2006;66(1):324–30.
Article
CAS
PubMed
Google Scholar
Ho YT, Foster PA, Newman SP, Leese MP, Potter BV, Purohit A, et al. Sulphamoylated derivatives of 2-methoxyestradiol induce apoptosis in breast, ovarian and prostate cancer cell lines through mitotic arrest via the intrinsic apoptotic pathway. Cancer Res. 2006;66(s8):1097–8.
Google Scholar
Newman SP, Foster PA, Ho YT, Day JM, Raobaikady B, Kasprzyk PG, et al. The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers. Br J Cancer. 2007;97(12):1673–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slee EA, Adrain C, Martin SJ. Executioner caspase-3, −6, and −7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276(10):7320–6.
Article
CAS
PubMed
Google Scholar
LaVallee TM, Zhan XH, Johnson MS, Herbstritt CJ, Swartz G, Williams MS, et al. 2-Methoxyestradiol up-regulates death receptor 5 and induces apoptosis through activation of the extrinsic pathway. Cancer Res. 2003;63(2):468–75.
CAS
PubMed
Google Scholar
Foster PA, Ho YT, Newman SP, Kasprzyk PG, Leese MP, Potter BV, et al. 2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel ex vivo technique. Breast Cancer Res Treat. 2008;111(2):251–60.
Article
CAS
PubMed
Google Scholar
Kato S, Sadarangani A, Lange S, Delpiano AM, Vargas M, Branes J, et al. 2-Methoxyestradiol mediates apoptosis through caspase-dependent and independent mechanisms in ovarian Cancer cells but not in normal counterparts. Reprod Sci. 2008;15(9):878–94.
Article
CAS
PubMed
Google Scholar
Visagie MH, Birkholtz LM, Joubert AM. A 2-methoxyestradiol bis-sulphamoylated derivative induces apoptosis in breast cell lines. Cell Biosci. 2015;5:19–34.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, McMillan-Ward E, Kong J, Israels S, Gibson S. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008;15(1):171–82.
Article
CAS
PubMed
Google Scholar