Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013;18:792–801.
Article
CAS
PubMed
Google Scholar
Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S. Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev. 2017;2017:3296294.
Article
PubMed
PubMed Central
Google Scholar
Sun W, Wang Y, Zheng Y, Quan N. The emerging role of Sestrin2 in cell metabolism, and cardiovascular and age-related diseases. Aging Dis. 2020;11:154–63.
Article
PubMed
PubMed Central
Google Scholar
Buckbinder L, Talbott R, Seizinger BR, Kley N. Gene regulation by temperature-sensitive p53 mutants: identification of p53 response genes. Proc Natl Acad Sci U S A. 1994;91:10640–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Dhiman D, Shaha C. Sestrins: darkhorse in the regulation of mitochondrial health and metabolism. Mol Biol Rep. 2020;47:8049–60.
Article
CAS
PubMed
Google Scholar
Seo K, Seo S, Ki SH, Shin SM. Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radic Biol Med. 2016;101:511–23.
Article
CAS
PubMed
Google Scholar
Kim GT, Lee SH, Kim YM. Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J Cancer Prev. 2013;18:264–70.
Article
PubMed
PubMed Central
Google Scholar
Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 2002;21:6017–31.
Article
CAS
PubMed
Google Scholar
Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 2016;351:53–8.
Article
CAS
PubMed
Google Scholar
Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–8.
Article
CAS
PubMed
Google Scholar
Huang M, Kim HG, Zhong X, Dong C, Zhang B, Fang Z, et al. Sestrin 3 protects against diet-induced nonalcoholic steatohepatitis in mice through suppression of transforming growth factor β signal transduction. Hepatology. 2020;71:76–92.
Article
CAS
PubMed
Google Scholar
Peeters H, Debeer P, Bairoch A, Wilquet V, Huysmans C, Parthoens E, et al. PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum Genet. 2003;112:573–80.
Article
CAS
PubMed
Google Scholar
Tao R, Xiong X, Liangpunsakul S, Dong XC. Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes. 2015;64:1211–23.
Article
CAS
PubMed
Google Scholar
Rai N, Dey S. Protective response of Sestrin under stressful conditions in aging. Ageing Res Rev. 2020;64:101186.
Article
CAS
PubMed
Google Scholar
Budanov AV, Lee JH, Karin M. Stressin’ Sestrins take an aging fight. EMBO Mol Med. 2010;2:388–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Garcia O, Matsuzaki T, Olmer M, Masuda K, Lotz MK. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. J Orthop Res. 2017;35:2682–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajan SP, Anwar M, Jain B, Khan MA, Dey S, Dey AB. Serum sestrins: potential predictive molecule in human sarcopenia. Aging Clin Exp Res. 2020;33:1315–24.
Article
PubMed
Google Scholar
Zhang D-W, Wei Y-Y, Ji S, Fei G-H. Correlation between sestrin2 expression and airway remodeling in COPD. BMC Pulm Med. 2020;20:297.
Article
PubMed
PubMed Central
Google Scholar
Lovisari F, Roncon P, Soukoupova M, Paolone G, Labasque M, Ingusci S, et al. Implication of sestrin3 in epilepsy and its comorbidities. Brain Commun. 2021;3:fcaa130.
Article
PubMed
Google Scholar
Shen T, Alvarez-Garcia O, Li Y, Olmer M, Lotz MK. Suppression of Sestrins in aging and osteoarthritic cartilage: dysfunction of an important stress defense mechanism. Osteoarthritis Cartilage. 2017;25:287–96.
Article
CAS
PubMed
Google Scholar
Wang M, Xu Y, Liu J, Ye J, Yuan W, Jiang H, et al. Recent insights into the biological functions of sestrins in health and disease. Cell Physiol Biochem. 2017;43:1731–41.
Article
CAS
PubMed
Google Scholar
Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park H-W, et al. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab. 2012;16:311–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho A, Cho C-S, Namkoong S, Cho U-S, Lee JH. Biochemical basis of sestrin physiological activities. Trends Biochem Sci. 2016;41:621–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.
Article
CAS
PubMed
Google Scholar
Daenen K, Andries A, Mekahli D, van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34:975–91.
Article
PubMed
Google Scholar
Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51:1–13.
Article
CAS
PubMed
Google Scholar
Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev. 2019;2019:7092151.
Article
PubMed
PubMed Central
Google Scholar
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19:42.
Article
PubMed
Google Scholar
Nascimento EB, Osler ME, Zierath JR. Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305:E1408–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menglong W, Wan J. GW27-e0974 Increased expression of Sestrin2 in human and mice ischemic hearts. J Am Coll Cardiol. 2016;68:C34.
Article
Google Scholar
Dong Z, Lin C, Liu Y, Jin H, Wu H, Li Z, et al. Upregulation of sestrins protect atriums against oxidative damage and fibrosis in human and experimental atrial fibrillation. Sci Rep. 2017;7:46307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsilioni I, Filippidis AS, Kerenidi T, Budanov AV, Zarogiannis SG, Gourgoulianis KI. Sestrin-2 is significantly increased in malignant pleural effusions due to lung cancer and is potentially secreted by pleural mesothelial cells. Clin Biochem. 2016;49:726–8.
Article
CAS
PubMed
Google Scholar
Ro S-H, Xue X, Ramakrishnan SK, Cho C-S, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. Elife. 2016;5:e12204.
Article
PubMed
PubMed Central
Google Scholar
Rai N, Kumar R, Desai GR, Venugopalan G, Shekhar S, Chatterjee P, et al. Relative alterations in blood-based levels of Sestrin in Alzheimer’s Disease and mild cognitive impairment patients. J Alzheimers Dis. 2016;54:1147–55.
Article
CAS
PubMed
Google Scholar
Zhang X-Y, Wu X-Q, Deng R, Sun T, Feng G-K, Zhu X-F. Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal. 2013;25:150–8.
Article
CAS
PubMed
Google Scholar
Shin BY, Jin SH, Cho IJ, Ki SH. Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med. 2012;53:834–41.
Article
CAS
PubMed
Google Scholar
Kumar A, Giri S, Shaha C. Sestrin2 facilitates glutamine-dependent transcription of PGC-1α and survival of liver cancer cells under glucose limitation. FEBS J. 2018;285:1326–45.
Article
CAS
PubMed
Google Scholar
Chen C-C, Jeon S-M, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell. 2010;18:592–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ. FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci. 2012;125:1191–203.
Article
CAS
PubMed
Google Scholar
Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327:1223–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eid AA, Lee D-Y, Roman LJ, Khazim K, Gorin Y. Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol. 2013;33:3439–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ro S-H, Nam M, Jang I, Park H-W, Park H, Semple IA, et al. Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Proc Natl Acad Sci U S A. 2014;111:7849–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Cuevas S, Yang S, van Villar A, Escano C, Asico L, et al. Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension. 2014;64:825–32.
Article
CAS
PubMed
Google Scholar
Sun W, Wang B, Qu X-L, Zheng B-Q, Huang W-D, Sun Z-W, et al. Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications. Cells. 2019;9:87.
Article
PubMed Central
Google Scholar
Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.
Article
CAS
PubMed
Google Scholar
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen I, Idan C, Rider P, Peleg R, Vornov E, Elena V, et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep. 2015;5:14756.
Article
CAS
PubMed
Google Scholar
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coates PJ, Lorimore SA, Wright EG. Cell and tissue responses to genotoxic stress. J Pathol. 2005;205:221–35.
Article
CAS
PubMed
Google Scholar
Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal. 2011;15:1679–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11:1306–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding B, Parmigiani A, Yang C, Budanov AV. Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation. Cell Cycle. 2015;14:3231–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao B, Shah P, Budanov AV, Qiang L, Ming M, Aplin A, et al. Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells. J Biol Chem. 2014;289:35806–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov A, et al. Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ. 2013;20:611–9.
Article
CAS
PubMed
Google Scholar
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.
Article
CAS
PubMed
Google Scholar
Kimball SR, Ravi S, Gordon BS, Dennis MD, Jefferson LS. Amino acid-induced activation of mTORC1 in rat liver is attenuated by short-term consumption of a high-fat diet. J Nutr. 2015;145:2496–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17:73–84.
Article
CAS
PubMed
Google Scholar
Jin SH, Yang JH, Shin BY, Seo K, Shin SM, Cho IJ, Ki SH. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction. Toxicol Appl Pharmacol. 2013;271:95–105.
Article
CAS
PubMed
Google Scholar
Fontana L, Partridge L, Longo VD. Extending healthy life span–from yeast to humans. Science. 2010;328:321–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev. 2019;177:186–200.
Article
CAS
PubMed
Google Scholar
Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat Aging. 2021;1:60–72.
Article
Google Scholar
Wang L-X, Zhu X-M, Yao Y-M. Sestrin 2: its potential role and regulatory mechanism in host immune response in diseases. Front Immunol. 2019;10:2797.
Article
PubMed
PubMed Central
Google Scholar
Seo K, Ki SH, Shin SM. Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cell Signal. 2015;27:1533–43.
Article
CAS
PubMed
Google Scholar
Kimball SR, Gordon BS, Moyer JE, Dennis MD, Jefferson LS. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal. 2016;28:896–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang G, Shi R, Zhang Q. Hypoxia and oxygen-sensing signaling in gene regulation and cancer progression. IJMS. 2020;21:8162.
Article
CAS
PubMed Central
Google Scholar
Pan C, Chen Z, Li C, Han T, Liu H, Wang X. Sestrin2 as a gatekeeper of cellular homeostasis: physiological effects for the regulation of hypoxia-related diseases. J Cell Mol Med. 2021;25:5341–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson N, Hristova M, Heintz NH, Lounsbury KM, van Vilet A. Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Amrican journal of physiology. Lung Cell Mol Physiol. 2011;301:L993–1002.
Article
CAS
Google Scholar
Shi X, Doycheva DM, Xu L, Tang J, Yan M, Zhang JH. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis. 2016;95:111–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu J, Li W, Li S, Liu W, Zhang Y, Wu X, et al. Sestrin-mediated inhibition of stress-induced intervertebral disc degradation through the enhancement of autophagy. Cell Physiol Biochem. 2018;45:1940–54.
Article
CAS
PubMed
Google Scholar
Ding B, Parmigiani A, Divakaruni AS, Archer K, Murphy AN, Budanov AV. Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep. 2016;6:22538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park H-W, Park H, Ro S-H, Jang I, Semple IA, Kim DN, et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun. 2014;5:4233.
Article
CAS
PubMed
Google Scholar
Brüning A, Rahmeh M, Friese K. Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol Oncol. 2013;7:1012–8.
Article
PubMed
PubMed Central
Google Scholar
Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB, et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget. 2016;7:12254–66.
Article
PubMed
PubMed Central
Google Scholar
Hwang H-J, Jung TW, Choi J-H, Lee HJ, Chung HS, Seo JA, et al. Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1436–44.
Article
CAS
PubMed
Google Scholar
Yang Y, Guo G, Zhou W, Ge Y, Fan Z, Liu Q, Gao Y. Sestrin2 protects against bavachin induced ER stress through AMPK/mTORC1 signaling pathway in HepG2 cells. J Pharmacol Sci. 2021;145:175–86.
Article
CAS
PubMed
Google Scholar
Jegal KH, Park SM, Cho SS, Byun SH, Ku SK, Kim SC, et al. Activating transcription factor 6-dependent sestrin 2 induction ameliorates ER stress-mediated liver injury. Biochim Biophys Acta Mol Cell Res. 2017;1864:1295–307.
Article
CAS
PubMed
Google Scholar
Li Y, Zhang J, Zhou K, Xie L, Xiang G, Fang M, et al. Elevating sestrin2 attenuates endoplasmic reticulum stress and improves functional recovery through autophagy activation after spinal cord injury. Cell Biol Toxicol. 2020;37:401–19.
Article
PubMed
Google Scholar
Wang L-X, Zhu X-M, Luo Y-N, Wu Y, Dong N, Tong Y-L, Yao Y-M. Sestrin2 protects dendritic cells against endoplasmic reticulum stress-related apoptosis induced by high mobility group box-1 protein. Cell Death Dis. 2020;11:125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel P-L, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle. 2009;8:1571–6.
Article
CAS
PubMed
Google Scholar
Cordani M, Sánchez-Álvarez M, Strippoli R, Bazhin AV, Donadelli M. Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid Med Cell Longev. 2019;2019:1283075.
Article
PubMed
PubMed Central
Google Scholar
Kim M-J, Bae SH, Ryu J-C, Kwon Y, Oh J-H, Kwon J, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 2016;12:1272–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Shaha C. SESN2 facilitates mitophagy by helping Parkin translocation through ULK1 mediated Beclin1 phosphorylation. Sci Rep. 2018;8:615.
Article
PubMed
PubMed Central
Google Scholar
Ishihara M, Urushido M, Hamada K, Matsumoto T, Shimamura Y, Ogata K, et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol Renal Physiol. 2013;305:F495-509.
Article
CAS
PubMed
Google Scholar
Kumar A, Shaha C. RBX1-mediated ubiquitination of SESN2 promotes cell death upon prolonged mitochondrial damage in SH-SY5Y neuroblastoma cells. Mol Cell Biochem. 2018;446:1–9.
Article
CAS
PubMed
Google Scholar
Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, et al. Sestrins induce natural killer function in senescent-like CD8(+) T cells. Nat Immunol. 2020;21:684–94.
Article
CAS
PubMed
Google Scholar
Shim Y-S, Lee S, Park H-W, Park S-R. Sestrin2 mediates IL-4-induced IgE class switching by enhancing germline ε transcription in B cells. Immune Netw. 2020;20:e19.
Article
PubMed
PubMed Central
Google Scholar
Essler S, Dehne N, Brüne B. Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett. 2009;583:3531–5.
Article
CAS
PubMed
Google Scholar
Hu H-J, Shi Z-Y, Lin X-L, Chen S-M, Wang Q-Y, Tang S-Y. Upregulation of Sestrin2 expression protects against macrophage apoptosis induced by oxidized low-density lipoprotein. DNA Cell Biol. 2015;34:296–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang K, Xu C, Zhang Y, He S, Li D. Sestrin2 suppresses classically activated macrophages-mediated inflammatory response in myocardial infarction through inhibition of mTORC1 signaling. Front Immunol. 2017;8:728.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sundararajan S, Jayachandran I, Balasubramanyam M, Mohan V, Venkatesan B, Manickam N. Sestrin2 regulates monocyte activation through AMPK-mTOR nexus under high-glucose and dyslipidemic conditions. J Cell Biochem. 2018; 1–13.
Lanna A, Gomes DCO, Muller-Durovic B, McDonnell T, Escors D, Gilroy DW, et al. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017;18:354–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge L, Xu M, Brant SR, Liu S, Zhu C, Shang J, et al. Sestrin3 enhances macrophage-mediated generation of T helper 1 and T helper 17 cells in a mouse colitis model. Int Immunol. 2020;32:421–32.
Article
CAS
PubMed
Google Scholar
Wang X, Liu W, Zhuang D, Hong S, Chen J. Sestrin2 and sestrin3 suppress NK-92 cell-mediated cytotoxic activity on ovarian cancer cells through AMPK and mTORC1 signaling. Oncotarget. 2017;8:90132–43.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med. 2021;163:56–68.
Article
CAS
PubMed
Google Scholar
Sun Y, Wu Y, Tang S, Liu H, Jiang Y. Sestrin proteins in cardiovascular disease. Clin Chim Acta. 2020;508:43–6.
Article
CAS
PubMed
Google Scholar
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res. 2020;159:104990.
Article
CAS
PubMed
Google Scholar
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev. 2020;62:101096.
Article
CAS
PubMed
Google Scholar
Wang H, Li N, Shao X, Li J, Guo L, Yu X, et al. Increased plasma sestrin2 concentrations in patients with chronic heart failure and predicted the occurrence of major adverse cardiac events: a 36-month follow-up cohort study. Clin Chim Acta. 2019;495:338–44.
Article
CAS
PubMed
Google Scholar
Ye J, Wang M, Xu Y, Liu J, Jiang H, Wang Z, et al. Sestrins increase in patients with coronary artery disease and associate with the severity of coronary stenosis. Clin Chim Acta. 2017;472:51–7.
Article
CAS
PubMed
Google Scholar
Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304:596–600.
Article
CAS
PubMed
Google Scholar
Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Diwan A. Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy. 2012;8:1394–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quan N, Sun W, Wang L, Chen X, Bogan JS, Zhou X, et al. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism. FASEB J. 2017;31:4153–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quan N, Wang L, Chen X, Luckett C, Cates C, Rousselle T, et al. Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. J Mol Cell Cardiol. 2018;115:170–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong XC. The potential of sestrins as therapeutic targets for diabetes. Expert Opin Ther Targets. 2015;19:1011–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism. 2015;64:658–65.
Article
CAS
PubMed
Google Scholar
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24:1583.
Article
CAS
PubMed Central
Google Scholar
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53:4094–125.
Article
CAS
PubMed
Google Scholar
Chen S-D, Yang J-L, Lin T-K, Yang D-I. Emerging roles of sestrins in neurodegenerative diseases: counteracting oxidative stress and beyond. J Clin Med. 2019;8:1001.
Article
CAS
PubMed Central
Google Scholar
Chen Y-S, Chen S-D, Wu C-L, Huang S-S, Yang D-I. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol. 2014;253:63–71.
Article
CAS
PubMed
Google Scholar
Rai N, Upadhyay AD, Goyal V, Dwivedi S, Dey AB, Dey S. Sestrin2 as serum protein marker and potential therapeutic target for Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 2020;75:690–5.
CAS
PubMed
Google Scholar
Kallenborn-Gerhardt W, Lu R, Syhr KMJ, Heidler J, von Melchner H, Geisslinger G, et al. Antioxidant activity of sestrin 2 controls neuropathic pain after peripheral nerve injury. Antioxid Redox Signal. 2013;19:2013–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HJ, Joe Y, Kim S-K, Park S-U, Park J, Chen Y, et al. Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2α-ATF4 pathway. Free Radic Biol Med. 2017;110:81–91.
Article
CAS
PubMed
Google Scholar
Kim KM, Yang JH, Shin SM, Cho IJ, Ki SH. Sestrin2: a promising therapeutic target for liver diseases. Biol Pharm Bull. 2015;38:966–70.
Article
CAS
PubMed
Google Scholar
Bai L, Sun C, Zhai H, Chen C, Hu X, Ye X, et al. Investigation of urinary Sestrin2 in patients with obstructive sleep apnea. Lung. 2019;197:123–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang R, Wang Q, Zhai H, Du X, Sun S, Wang H. Explorating the involvement of plasma Sestrin2 in obstructive sleep apnea. Can Respir J. 2019;2019:2047674.
Article
PubMed
PubMed Central
Google Scholar
Kang Y, Chen C, Hu X, Du X, Zhai H, Fang Y, et al. Sestrin2 is involved in asthma: a case-control study. Allergy Asthma Clin Immunol. 2019;15:46.
Article
PubMed
PubMed Central
Google Scholar
Wempe F, De-Zolt S, Koli K, Bangsow T, Parajuli N, Dumitrascu R, et al. Inactivation of sestrin 2 induces TGF-beta signaling and partially rescues pulmonary emphysema in a mouse model of COPD. Dis Model Mech. 2010;3:246–53.
Article
CAS
PubMed
Google Scholar
Heidler J, Fysikopoulos A, Wempe F, Seimetz M, Bangsow T, Tomasovic A, et al. Sestrin-2, a repressor of PDGFRβ signalling, promotes cigarette-smoke-induced pulmonary emphysema in mice and is upregulated in individuals with COPD. Dis Model Mech. 2013;6:1378–87.
CAS
PubMed
PubMed Central
Google Scholar
Tomasovic A, Kurrle N, Sürün D, Heidler J, Husnjak K, Poser I, et al. Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions. J Biol Chem. 2015;290:9738–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsilogianni Z, Baker JR, Papaporfyriou A, Papaioannou AI, Papathanasiou E, Koulouris NG, et al. Sirtuin 1: endocan and Sestrin 2 in different biological samples in patients with asthma. Does severity make the difference? J Clin Med. 2020;9:473.
Article
CAS
PubMed Central
Google Scholar
Chai J, Wang J, Jiang R, Wang H, Zhai H, Zheng Y, et al. Diagnostic value of Sestrin2 in patients with obstructive sleep apnea. Metab Syndr Relat Disord. 2020;18:362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang BJ, Wang S, Xiao M, Zhang J, Wang AJ, Guo Y, et al. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res. 2021;164:105331.
Article
CAS
PubMed
Google Scholar
Hamatani H, Hiromura K, Sakairi T, Takahashi S, Watanabe M, Maeshima A, et al. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells. Am J Physiol Renal Physiol. 2014;307:F708–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smeets B, Huber TB. Sestrin 2: a regulator of the glomerular parietal epithelial cell phenotype. Am J Physiol Renal Physiol. 2014;307:F798–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia Y, Zheng Z, Yang Y, Zou M, Li J, Wang L, et al. MiR-4756 promotes albumin-induced renal tubular epithelial cell epithelial-to-mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2. J Cell Physiol. 2019;234:2905–15.
Article
CAS
PubMed
Google Scholar
Lin Q, Ma Y, Chen Z, Hu J, Chen C, Fan Y, et al. Sestrin-2 regulates podocyte mitochondrial dysfunction and apoptosis under high-glucose conditions via AMPK. Int J Mol Med. 2020;45:1361–72.
CAS
PubMed
PubMed Central
Google Scholar
Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, et al. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol. 2019;2:115.
Article
PubMed
PubMed Central
Google Scholar
Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka S-O, et al. Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med. 2015;78:156–67.
Article
CAS
PubMed
Google Scholar
Lanna A, Gomes DC, Muller-Durovic B, McDonnell T, Escors D, Gilroy DW, Lee JH, Karin M, Akbar AN. A sestrin dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017;18:354–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol. 2013;13:453–60.
Article
CAS
PubMed
Google Scholar
Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ, et al. Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages. Toxicol Sci. 2015;144:425–35.
Article
CAS
PubMed
Google Scholar
Kos N, Gradisnik L, Velnar T. A brief review of the degenerative intervertebral disc disease. Med Arch. 2019;73:421–4.
Article
PubMed
PubMed Central
Google Scholar
Vaudreuil N, Kadow T, Yurube T, Hartman R, Ngo K, Dong Q, et al. NSAID use in intervertebral disc degeneration: what are the effects on matrix homeostasis in vivo? Spine J. 2017;17:1163–70.
Article
PubMed
PubMed Central
Google Scholar
Bian Q, Ma L, Jain A, Crane JL, Kebaish K, Wan M, et al. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis. Bone Res. 2017;5:17008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng C, Liu H, Yang M, Zhang Y, Huang B, Zhou Y. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways. Cell Cycle. 2016;15:1674–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong C-Y, Zhang H-H. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci. 2021;273:119266.
Article
CAS
PubMed
Google Scholar
Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976). 2002;27:2631–44.
Article
Google Scholar
Sacitharan PK. Ageing and osteoarthritis. Subcell Biochem. 2019;91:123–59.
Article
CAS
PubMed
Google Scholar
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104:293–311.
Article
PubMed
Google Scholar
Lou Y, Wu J, Liang J, Yang C, Wang K, Wang J, Guo X. Eupatilin protects chondrocytes from apoptosis via activating sestrin2-dependent autophagy. Int Immunopharmacol. 2019;75:105748.
Article
PubMed
Google Scholar
Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic exercise improves mitochondrial function in sarcopenia mice through Sestrin2 in an AMPKα2-dependent manner. J Gerontol A Biol Sci Med Sci. 2021;76:1161–8.
Article
PubMed
Google Scholar
Segalés J, Perdiguero E, Serrano AL, Sousa-Victor P, Ortet L, Jardí M, et al. Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nat Commun. 2020;11:189.
Article
PubMed
PubMed Central
Google Scholar
Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.
Article
CAS
PubMed
Google Scholar
Yang BA, Castor-Macias J, Fraczek P, Cornett A, Brown LA, Kim M, et al. Sestrins regulate muscle stem cell metabolic homeostasis. Stem Cell Reports. 2021;16:2078–88.
Article
PubMed
PubMed Central
Google Scholar
Yoo S-Z, No M-H, Heo J-W, Park D-H, Kang J-H, Kim SH, Kwak H-B. Role of exercise in age-related sarcopenia. J Exerc Rehabil. 2018;14:551–8.
Article
PubMed
PubMed Central
Google Scholar
Martyn JAJ, Kaneki M. Muscle atrophy and the Sestrins. N Engl J Med. 2020;383:1279–82.
Article
PubMed
Google Scholar
Crisol BM, Lenhare L, Gaspar RS, Gaspar RC, Muñoz VR, da Silva ASR, et al. The role of physical exercise on Sestrin1 and 2 accumulations in the skeletal muscle of mice. Life Sci. 2018;194:98–103.
Article
CAS
PubMed
Google Scholar
Kim M, Sujkowski A, Namkoong S, Gu B, Cobb T, Kim B, et al. Sestrins are evolutionarily conserved mediators of exercise benefits. Nat Commun. 2020;11:190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corrêa HL, Neves RVP, Deus LA, Reis AL, Simões HG, Navalta JW, et al. Could sestrins 2 be the secret of resistance exercise benefiting dialytic patients? Nephrol Dial Transplant. 2020;35:2198–9.
Article
PubMed
Google Scholar
Zeng N, D’Souza RF, Figueiredo VC, Markworth JF, Roberts LA, Peake JM, et al. Acute resistance exercise induces Sestrin2 phosphorylation and p62 dephosphorylation in human skeletal muscle. Physiol Rep. 2017;5:e13526.
Article
PubMed
PubMed Central
Google Scholar
Lenhare L, Crisol BM, Silva VRR, Katashima CK, Cordeiro AV, Pereira KD, et al. Physical exercise increases Sestrin 2 protein levels and induces autophagy in the skeletal muscle of old mice. Exp Gerontol. 2017;97:17–21.
Article
CAS
PubMed
Google Scholar
Wall BT, van Loon LJC. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev. 2013;71:195–208.
Article
PubMed
Google Scholar
Li JB, Jefferson LS. Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim Biophys Acta. 1978;544:351–9.
Article
CAS
PubMed
Google Scholar
Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, et al. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr. 2011;141:856–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore DR, Atherton PJ, Rennie MJ, Tarnopolsky MA, Phillips SM. Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta Physiol (Oxf). 2011;201:365–72.
Article
CAS
Google Scholar
Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 1985;2009(107):987–92.
Google Scholar
Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014;9:1281–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu D, Shimkus KL, Lacko HA, Kutzler L, Jefferson LS, Kimball SR. Evidence for a role for Sestrin1 in mediating leucine-induced activation of mTORC1 in skeletal muscle. Am J Physiol Endocrinol Metab. 2019;316:E817–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007;38(Suppl 1):S11-25.
Article
PubMed
Google Scholar
Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Res. 2018;6:1.
Article
PubMed
PubMed Central
Google Scholar
Pazarci Ö, Doğan HO, Kilinç S, Çamurcu IY. Does mammalian target of rapamycin or sestrin 1 protein signaling have a role in bone fracture healing? Turk J Med Sci. 2019;49:1774–8.
CAS
PubMed
PubMed Central
Google Scholar
Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19:626–42.
Article
CAS
PubMed
Google Scholar
Takayanagi H. The role of NFAT in osteoclast formation. Ann N Y Acad Sci. 2007;1116:227–37.
Article
CAS
PubMed
Google Scholar
Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124:991–8.
Article
CAS
PubMed
Google Scholar
Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, Prachayasittikul V, Supokawej A. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12.
Article
PubMed
PubMed Central
Google Scholar
Oh SY, Kang N, Kang JY, Kim KW, Choi J-H, Yang Y-M, Shin DM. Sestrin2 regulates osteoclastogenesis via the p62-TRAF6 interaction. Front Cell Dev Biol. 2021;9:646803.
Article
PubMed
PubMed Central
Google Scholar
Chen K-B, Xuan Y, Shi W-J, Chi F, Xing R, Zeng Y-C. Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer. Am J Transl Res. 2016;8:1903–9.
CAS
PubMed
PubMed Central
Google Scholar
Wei J-L, Fu Z-X, Fang M, Guo J-B, Zhao Q-N, Lu W-D, Zhou Q-Y. Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol Rep. 2015;33:1349–57.
Article
CAS
PubMed
Google Scholar
Shin J, Bae J, Park S, Kang H-G, Shin SM, Won G, et al. mTOR-dependent role of Sestrin2 in regulating tumor progression of human endometrial cancer. Cancers (Basel). 2020;12:2515.
Article
CAS
Google Scholar
Byun Y, Choi Y-C, Jeong Y, Lee G, Yoon S, Jeong Y, et al. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell Mol Biol Lett. 2019;24:28.
Article
PubMed
PubMed Central
Google Scholar
Zhu G, Xu P, Guo S, Yi X, Wang H, Yang Y, et al. Metastatic melanoma cells rely on Sestrin2 to acquire anoikis resistance via detoxifying intracellular ROS. J Invest Dermatol. 2020;140:666-675.e2.
Article
CAS
PubMed
Google Scholar
Byun J-K, Choi Y-K, Kim J-H, Jeong JY, Jeon H-J, Kim M-K, et al. A positive feedback loop between Sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep. 2017;20:586–99.
Article
CAS
PubMed
Google Scholar
Waterhouse M, Pennisi S, Pfeifer D, Deuter M, von Bubnoff N, Scherer F, et al. Colon and liver tissue damage detection using methylated SESN3 and PTK2B genes in circulating cell-free DNA in patients with acute graft-versus-host disease. Bone Marrow Transplant. 2021;56:327–33.
Article
CAS
PubMed
Google Scholar
Chen S, Yan W, Lang W, Yu J, Xu L, Xu X, et al. SESN2 correlates with advantageous prognosis in hepatocellular carcinoma. Diagn Pathol. 2017;12:13.
Article
PubMed
PubMed Central
Google Scholar
Huang Q-R, Pan X-B. Prognostic lncRNAs, miRNAs, and mRNAs form a competing endogenous RNA network in colon cancer. Front Oncol. 2019;9:712.
Article
PubMed
PubMed Central
Google Scholar
Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, et al. Individual radiosensitivity in oncological patients: linking adverse normal tissue reactions and genetic features. Front Oncol. 2019;9:987.
Article
PubMed
PubMed Central
Google Scholar
Chai D, Wang G, Zhou Z, Yang H, Yu Z. Insulin increases Sestrin 2 content by reducing its degradation through the PI 3 K/mTOR signaling pathway. Int J Endocrinol. 2015;2015:505849.
Article
PubMed
PubMed Central
Google Scholar
Singh P, Chowdhuri DK. Modulation of sestrin confers protection to Cr(VI) induced neuronal cell death in Drosophila melanogaster. Chemosphere. 2018;191:302–14.
Article
CAS
PubMed
Google Scholar
Jeong S, Kim DY, Kang SH, Yun HK, Kim JL, Kim BR, et al. Docosahexaenoic acid enhances oxaliplatin-induced autophagic cell death via the ER stress/Sesn2 pathway in colorectal cancer. Cancers (Basel). 2019;11:982.
Article
CAS
Google Scholar
Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R, et al. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O(2-) production in cancer cells. Br J Cancer. 2018;119:994–1008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Y, Zhu J, Huang H, Xiang D, Li Y, Zhang D, et al. SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers. Autophagy. 2016;12:1229–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi SH, Hong HK, Cho YB, Lee WY, Yoo HY. Identification of Sestrin3 involved in the in vitro resistance of colorectal cancer cells to irinotecan. PLoS One. 2015;10:e0126830.
Article
PubMed
PubMed Central
Google Scholar
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials. 2021;275:120908.
Article
CAS
PubMed
Google Scholar
Xiao T, Zhang L, Huang Y, Shi Y, Wang J, Ji Q, et al. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci. 2019;218:132–8.
Article
CAS
PubMed
Google Scholar
Fang C, Yang Z, Shi L, Zeng T, Shi Y, Liu L, et al. Circulating sestrin levels are increased in hypertension patients. Dis Markers. 2020;2020:3787295.
Article
PubMed
PubMed Central
Google Scholar
Lee S, Shin J, Hong Y, Shin SM, Shin HW, Shin J, et al. Sestrin2 alleviates palmitate-induced endoplasmic reticulum stress, apoptosis, and defective invasion of human trophoblast cells. Am J Reprod Immunol. 2020;83:e13222.
Article
CAS
PubMed
Google Scholar
Mohany KM, Al RO. Association of serum sestrin 2 and betatrophin with serum neutrophil gelatinase associated lipocalin levels in type 2 diabetic patients with diabetic nephropathy. J Diabetes Metab Disord. 2020;19:249–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Huang Y, Semple I, Kim M, Zhang Z, Lee JH. Cardioprotective roles of sestrin 1 and sestrin 2 against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol. 2019;317:H39–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014;9:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar